Mitochondria and calcium defects correlate with axonal dysfunction in GDAP1-related Charcot-Marie-Tooth mouse model

Ganglioside-induced differentiation associated protein 1 (GDAP1) gene encodes a protein of the mitochondrial outer membrane and of the mitochondrial membrane contacts with the endoplasmic reticulum (MAMs) and lysosomes. Since mutations in GDAP1 cause Charcot–Marie–Tooth, an inherited motor and senso...

Full description

Bibliographic Details
Main Authors: Azahara Civera-Tregón, Laura Domínguez, Paula Martínez-Valero, Clàudia Serrano, Alex Vallmitjana, Raúl Benítez, Janet Hoenicka, Jorgina Satrústegui, Francesc Palau
Format: Article
Language:English
Published: Elsevier 2021-05-01
Series:Neurobiology of Disease
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0969996121000498
id doaj-514e4792cc8848fbaf12d9db9ad223b4
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Azahara Civera-Tregón
Laura Domínguez
Paula Martínez-Valero
Clàudia Serrano
Alex Vallmitjana
Raúl Benítez
Janet Hoenicka
Jorgina Satrústegui
Francesc Palau
spellingShingle Azahara Civera-Tregón
Laura Domínguez
Paula Martínez-Valero
Clàudia Serrano
Alex Vallmitjana
Raúl Benítez
Janet Hoenicka
Jorgina Satrústegui
Francesc Palau
Mitochondria and calcium defects correlate with axonal dysfunction in GDAP1-related Charcot-Marie-Tooth mouse model
Neurobiology of Disease
Axon
Bioenergetics
Calcium
Charcot-Marie-Tooth disease
Embryonic motor neurons
GDAP1
author_facet Azahara Civera-Tregón
Laura Domínguez
Paula Martínez-Valero
Clàudia Serrano
Alex Vallmitjana
Raúl Benítez
Janet Hoenicka
Jorgina Satrústegui
Francesc Palau
author_sort Azahara Civera-Tregón
title Mitochondria and calcium defects correlate with axonal dysfunction in GDAP1-related Charcot-Marie-Tooth mouse model
title_short Mitochondria and calcium defects correlate with axonal dysfunction in GDAP1-related Charcot-Marie-Tooth mouse model
title_full Mitochondria and calcium defects correlate with axonal dysfunction in GDAP1-related Charcot-Marie-Tooth mouse model
title_fullStr Mitochondria and calcium defects correlate with axonal dysfunction in GDAP1-related Charcot-Marie-Tooth mouse model
title_full_unstemmed Mitochondria and calcium defects correlate with axonal dysfunction in GDAP1-related Charcot-Marie-Tooth mouse model
title_sort mitochondria and calcium defects correlate with axonal dysfunction in gdap1-related charcot-marie-tooth mouse model
publisher Elsevier
series Neurobiology of Disease
issn 1095-953X
publishDate 2021-05-01
description Ganglioside-induced differentiation associated protein 1 (GDAP1) gene encodes a protein of the mitochondrial outer membrane and of the mitochondrial membrane contacts with the endoplasmic reticulum (MAMs) and lysosomes. Since mutations in GDAP1 cause Charcot–Marie–Tooth, an inherited motor and sensory neuropathy, its function is essential for peripheral nerve physiology. Our previous studies showed structural and functional defects in mitochondria and their contacts when GDAP1 is depleted. Nevertheless, the underlying axonal pathophysiological events remain unclear. Here, we have used embryonic motor neurons (eMNs) cultures from Gdap1 knockout (Gdap1−/−) mice to investigate in vivo mitochondria and calcium homeostasis in the axons. We imaged mitochondrial axonal transport and we found a defective pattern in the Gdap1−/− eMNs. We also detected pathological and functional mitochondria membrane abnormalities with a drop in ATP production and a deteriorated bioenergetic status. Another consequence of the loss of GDAP1 in the soma and axons of eMNs was the in vivo increase calcium levels in both basal conditions and during recovery after neuronal stimulation with glutamate. Further, we found that glutamate-stimulation of respiration was lower in Gdap1−/− eMNs showing that the basal bioenergetics failure jeopardizes a full respiratory response and prevents a rapid return of calcium to basal levels. Together, our results demonstrate that the loss of GDAP1 critically compromises the morphology and function of mitochondria and its relationship with calcium homeostasis in the soma and axons, offering important insight into the cellular mechanisms associated with axonal degeneration of GDAP1-related CMT neuropathies and the relevance that axon length may have.
topic Axon
Bioenergetics
Calcium
Charcot-Marie-Tooth disease
Embryonic motor neurons
GDAP1
url http://www.sciencedirect.com/science/article/pii/S0969996121000498
work_keys_str_mv AT azaharaciveratregon mitochondriaandcalciumdefectscorrelatewithaxonaldysfunctioningdap1relatedcharcotmarietoothmousemodel
AT lauradominguez mitochondriaandcalciumdefectscorrelatewithaxonaldysfunctioningdap1relatedcharcotmarietoothmousemodel
AT paulamartinezvalero mitochondriaandcalciumdefectscorrelatewithaxonaldysfunctioningdap1relatedcharcotmarietoothmousemodel
AT claudiaserrano mitochondriaandcalciumdefectscorrelatewithaxonaldysfunctioningdap1relatedcharcotmarietoothmousemodel
AT alexvallmitjana mitochondriaandcalciumdefectscorrelatewithaxonaldysfunctioningdap1relatedcharcotmarietoothmousemodel
AT raulbenitez mitochondriaandcalciumdefectscorrelatewithaxonaldysfunctioningdap1relatedcharcotmarietoothmousemodel
AT janethoenicka mitochondriaandcalciumdefectscorrelatewithaxonaldysfunctioningdap1relatedcharcotmarietoothmousemodel
AT jorginasatrustegui mitochondriaandcalciumdefectscorrelatewithaxonaldysfunctioningdap1relatedcharcotmarietoothmousemodel
AT francescpalau mitochondriaandcalciumdefectscorrelatewithaxonaldysfunctioningdap1relatedcharcotmarietoothmousemodel
_version_ 1724209258475552768
spelling doaj-514e4792cc8848fbaf12d9db9ad223b42021-03-22T08:43:14ZengElsevierNeurobiology of Disease1095-953X2021-05-01152105300Mitochondria and calcium defects correlate with axonal dysfunction in GDAP1-related Charcot-Marie-Tooth mouse modelAzahara Civera-Tregón0Laura Domínguez1Paula Martínez-Valero2Clàudia Serrano3Alex Vallmitjana4Raúl Benítez5Janet Hoenicka6Jorgina Satrústegui7Francesc Palau8Laboratory of Neurogenetics and Molecular Medicine – IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Madrid, SpainLaboratory of Neurogenetics and Molecular Medicine – IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Madrid, SpainDepartamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas – Universidad Autónoma de Madrid, Madrid, SpainLaboratory of Neurogenetics and Molecular Medicine – IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Biomedical Engineering Research Center, Universitat Politècnica de Catalunya and Institut de Recerca Sant Joan de Déu, Barcelona, SpainBiomedical Engineering Research Center, Universitat Politècnica de Catalunya and Institut de Recerca Sant Joan de Déu, Barcelona, SpainBiomedical Engineering Research Center, Universitat Politècnica de Catalunya and Institut de Recerca Sant Joan de Déu, Barcelona, SpainLaboratory of Neurogenetics and Molecular Medicine – IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Madrid, SpainCentro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Madrid, Spain; Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas – Universidad Autónoma de Madrid, Madrid, SpainLaboratory of Neurogenetics and Molecular Medicine – IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Madrid, Spain; Department of Genetic and Molecular Medicine – IPER, Hospital Sant Joan de Déu, Barcelona, Spain; Clinic Institute of Medicine and Dermatology, Hospital Clínic, and Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Corresponding author at: Hospital Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950 Esplugues de Llobregat, Barcelona, Spain.Ganglioside-induced differentiation associated protein 1 (GDAP1) gene encodes a protein of the mitochondrial outer membrane and of the mitochondrial membrane contacts with the endoplasmic reticulum (MAMs) and lysosomes. Since mutations in GDAP1 cause Charcot–Marie–Tooth, an inherited motor and sensory neuropathy, its function is essential for peripheral nerve physiology. Our previous studies showed structural and functional defects in mitochondria and their contacts when GDAP1 is depleted. Nevertheless, the underlying axonal pathophysiological events remain unclear. Here, we have used embryonic motor neurons (eMNs) cultures from Gdap1 knockout (Gdap1−/−) mice to investigate in vivo mitochondria and calcium homeostasis in the axons. We imaged mitochondrial axonal transport and we found a defective pattern in the Gdap1−/− eMNs. We also detected pathological and functional mitochondria membrane abnormalities with a drop in ATP production and a deteriorated bioenergetic status. Another consequence of the loss of GDAP1 in the soma and axons of eMNs was the in vivo increase calcium levels in both basal conditions and during recovery after neuronal stimulation with glutamate. Further, we found that glutamate-stimulation of respiration was lower in Gdap1−/− eMNs showing that the basal bioenergetics failure jeopardizes a full respiratory response and prevents a rapid return of calcium to basal levels. Together, our results demonstrate that the loss of GDAP1 critically compromises the morphology and function of mitochondria and its relationship with calcium homeostasis in the soma and axons, offering important insight into the cellular mechanisms associated with axonal degeneration of GDAP1-related CMT neuropathies and the relevance that axon length may have.http://www.sciencedirect.com/science/article/pii/S0969996121000498AxonBioenergeticsCalciumCharcot-Marie-Tooth diseaseEmbryonic motor neuronsGDAP1