A Computational Model for Real-Time Calculation of Electric Field due to Transcranial Magnetic Stimulation in Clinics
The aim of this paper is to propose an approach for an accurate and fast (real-time) computation of the electric field induced inside the whole brain volume during a transcranial magnetic stimulation (TMS) procedure. The numerical solution implements the admittance method for a discretized realistic...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | International Journal of Antennas and Propagation |
Online Access: | http://dx.doi.org/10.1155/2015/976854 |
Summary: | The aim of this paper is to propose an approach for an accurate and fast (real-time) computation of the electric field induced inside the whole brain volume during a transcranial magnetic stimulation (TMS) procedure. The numerical solution implements the admittance method for a discretized realistic brain model derived from Magnetic Resonance Imaging (MRI). Results are in a good agreement with those obtained using commercial codes and require much less computational time. An integration of the developed code with neuronavigation tools will permit real-time evaluation of the stimulated brain regions during the TMS delivery, thus improving the efficacy of clinical applications. |
---|---|
ISSN: | 1687-5869 1687-5877 |