Development of novel cellulose acetate-g-poly(sodium 4-styrenesulfonate) proton conducting polyelectrolyte polymer

The development of cheap and efficient proton conducting polymers attracts scientists' attention, resulting in its potential role in fuel cell applications. This work synthesized a novel cellulose acetate-g-poly(sodium 4-styrene sulfonate) via free radical polymerization using potassium persulf...

Full description

Bibliographic Details
Main Authors: Asmaa Attya Shalaby, Mohamed Hussien Abd Elmageed, Gihan Farouk Malash, Tamer Mahmoud Tamer, Ahmed Mohamed Omer, Mohamed Samir Mohy-Eldin, Randa Eslah Khalifa
Format: Article
Language:English
Published: Elsevier 2021-10-01
Series:Journal of Saudi Chemical Society
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1319610321001320
Description
Summary:The development of cheap and efficient proton conducting polymers attracts scientists' attention, resulting in its potential role in fuel cell applications. This work synthesized a novel cellulose acetate-g-poly(sodium 4-styrene sulfonate) via free radical polymerization using potassium persulfate (KPS) as an initiator. The effects of varying KPS concentration, cellulose acetate (CA), sodium 4-styrene sulfonate (Na-SSA) content, reaction time, and temperature on the grafting parameters were studied. Grafting parameters, including the grafting yield (GY %), Add-on (%) and grafting efficiency (GE %) of the grafting reaction, were evaluated. Additionally, FTIR, TGA, DSC, 1HNMR and EDX analyses were studied. The developed graft copolymers membranes illustrated increased water uptake values and ion exchange capacity (IEC) with the add-on (%). Furthermore, the proton conductivity of the developed graft copolymers was found superior (4.77 × 10−3 S.cm−1) to the pristine CA membrane (0.035 × 10−3 S.cm−1).
ISSN:1319-6103