Differential cell-type-expression of CYFIP1 and CYFIP2 in the adult mouse hippocampus

Recent molecular genetic studies have suggested that two members of the cytoplasmic FMR1-interacting protein (CYFIP) gene family, CYFIP1 and CYFIP2, are causally associated with several brain disorders. However, the clinical features of individuals with CYFIP1 and CYFIP2 variants are quite different...

Full description

Bibliographic Details
Main Authors: Yinhua Zhang, Hyae Rim Kang, Kihoon Han
Format: Article
Language:English
Published: Taylor & Francis Group 2019-11-01
Series:Animal Cells and Systems
Subjects:
Online Access:http://dx.doi.org/10.1080/19768354.2019.1696406
Description
Summary:Recent molecular genetic studies have suggested that two members of the cytoplasmic FMR1-interacting protein (CYFIP) gene family, CYFIP1 and CYFIP2, are causally associated with several brain disorders. However, the clinical features of individuals with CYFIP1 and CYFIP2 variants are quite different. In addition, null mice for either Cyfip1 or Cyfip2 are lethal, indicating that these two genes cannot compensate for each other in vivo. Although these results strongly suggest that CYFIP1 and CYFIP2 have distinct functions in vivo, the detailed mechanisms underlying their differences remain enigmatic and unexplored, especially considering their high sequence homology. To address this, we analyzed a recently established mouse brain single-cell RNA sequencing (scRNAseq) database and found that Cyfip1 and Cyfip2 are dominantly expressed in non-neurons and neurons, respectively, in all tested brain regions. To validate these observations, we performed fluorescent immunohistochemistry in the adult mouse hippocampus with either a CYFIP1 or CYFIP2 antibody combined with antibodies for various cell-type-specific markers. Consistent with our analysis of the scRNAseq database, CYFIP1 signals were detected in both neurons and astrocytes, while CYFIP2 signals were mainly detected in neurons. These results suggest differential cell-type-expression of CYFIP1 and CYFIP2 in vivo, which provides novel insights into our understanding of the pathophysiology of and potential treatments for CYFIP-associated brain disorders.
ISSN:1976-8354
2151-2485