Preparation and Synergistic Effect of Chitosan/Sodium Phytate/MgO Nanoparticle Fire-Retardant Coatings on Wood Substrate through Layer-By-Layer Self-Assembly

Fire-retardant chitosan/sodium phytate/MgO nanoparticle (CH/SP/nano-MgO) coatings were loaded on a wood substrate via electrostatic layer-by-layer self-assembly and characterized by scanning electron microscopy and energy-dispersive spectrometry. The flammability and thermal degradation of the origi...

Full description

Bibliographic Details
Main Authors: Feiyue Zhao, Tingli Tang, Sijie Hou, Yanchun Fu
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Coatings
Subjects:
Online Access:https://www.mdpi.com/2079-6412/10/9/848
Description
Summary:Fire-retardant chitosan/sodium phytate/MgO nanoparticle (CH/SP/nano-MgO) coatings were loaded on a wood substrate via electrostatic layer-by-layer self-assembly and characterized by scanning electron microscopy and energy-dispersive spectrometry. The flammability and thermal degradation of the original wood and wood samples treated with chitosan, chitosan/sodium phytate, chitosan/sodium phytate/MgO nanoparticles were studied by limiting oxygen index (LOI), exposure combustion experiments and thermogravimetric analysis (TGA), respectively. The CH/SP/nano-MgO coating served as an intumescent fire-retardant system that created a physical protection cover and exhibited the best fire retardant performance. The LOI value was 30.2% and required approximately 16–17 s to self-extinguish when exposed to air. The TGA curves also showed that char formation protected the wood from combustion.
ISSN:2079-6412