Hybrid Magnetorheological Composites for Electric and Magnetic Field Sensors and Transducers

We present a simple, low-cost, and environmental-friendly method for the fabrication of hybrid magnetorheological composites (hMCs) based on cotton fibers soaked with a mixture of silicone oil (SO), carbonyl iron (CI) microparticles, and iron oxide microfibers (<inline-formula><math display...

Full description

Bibliographic Details
Main Authors: Ioan Bica, Eugen Mircea Anitas, Liviu Chirigiu
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/10/10/2060
id doaj-528a1a8533be41deb4db3d8f324cc28d
record_format Article
spelling doaj-528a1a8533be41deb4db3d8f324cc28d2020-11-25T03:45:18ZengMDPI AGNanomaterials2079-49912020-10-01102060206010.3390/nano10102060Hybrid Magnetorheological Composites for Electric and Magnetic Field Sensors and TransducersIoan Bica0Eugen Mircea Anitas1Liviu Chirigiu2West University of Timisoara, V. Parvan Avenue 4, 300223 Timisoara, RomaniaJoint Institute for Nuclear Research, 141980 Dubna, RussiaUniversity of Medicine and Pharmacy, 200396 Craiova, RomaniaWe present a simple, low-cost, and environmental-friendly method for the fabrication of hybrid magnetorheological composites (hMCs) based on cotton fibers soaked with a mixture of silicone oil (SO), carbonyl iron (CI) microparticles, and iron oxide microfibers (<inline-formula><math display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>F). The obtained hMCs, with various ratios (<inline-formula><math display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula>) of SO and <inline-formula><math display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>F, are used as dielectric materials for manufacturing electrical devices. The equivalent electrical capacitance and resistance are investigated in the presence of an external magnetic field, with flux density <i>B</i>. Based on the recorded data, we obtain the variation of the relative dielectric constant (<inline-formula><math display="inline"><semantics><mrow><msub><mi>ϵ</mi><mi mathvariant="normal">r</mi></msub><msup><mrow></mrow><mo>′</mo></msup></mrow></semantics></math></inline-formula>), and electrical conductivity (<inline-formula><math display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>), with <inline-formula><math display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula>, and <i>B</i>. We show that, by increasing <inline-formula><math display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula>, the distance between CI magnetic dipoles increases, and this leads to significant changes in the behaviour of <inline-formula><math display="inline"><semantics><mrow><msub><mi>ϵ</mi><mi mathvariant="normal">r</mi></msub><msup><mrow></mrow><mo>′</mo></msup></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> in a magnetic field. The results are explained by developing a theoretical model that is based on the dipolar approximation. They indicate that the obtained hMCs can be used in the fabrication of magneto-active fibers for fabrication of electric/magnetic field sensors and transducers.https://www.mdpi.com/2079-4991/10/10/2060magnetorheological suspensionsmagnetodielectric effectselectrical propertiescarbonyl ironiron oxide microfibers
collection DOAJ
language English
format Article
sources DOAJ
author Ioan Bica
Eugen Mircea Anitas
Liviu Chirigiu
spellingShingle Ioan Bica
Eugen Mircea Anitas
Liviu Chirigiu
Hybrid Magnetorheological Composites for Electric and Magnetic Field Sensors and Transducers
Nanomaterials
magnetorheological suspensions
magnetodielectric effects
electrical properties
carbonyl iron
iron oxide microfibers
author_facet Ioan Bica
Eugen Mircea Anitas
Liviu Chirigiu
author_sort Ioan Bica
title Hybrid Magnetorheological Composites for Electric and Magnetic Field Sensors and Transducers
title_short Hybrid Magnetorheological Composites for Electric and Magnetic Field Sensors and Transducers
title_full Hybrid Magnetorheological Composites for Electric and Magnetic Field Sensors and Transducers
title_fullStr Hybrid Magnetorheological Composites for Electric and Magnetic Field Sensors and Transducers
title_full_unstemmed Hybrid Magnetorheological Composites for Electric and Magnetic Field Sensors and Transducers
title_sort hybrid magnetorheological composites for electric and magnetic field sensors and transducers
publisher MDPI AG
series Nanomaterials
issn 2079-4991
publishDate 2020-10-01
description We present a simple, low-cost, and environmental-friendly method for the fabrication of hybrid magnetorheological composites (hMCs) based on cotton fibers soaked with a mixture of silicone oil (SO), carbonyl iron (CI) microparticles, and iron oxide microfibers (<inline-formula><math display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>F). The obtained hMCs, with various ratios (<inline-formula><math display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula>) of SO and <inline-formula><math display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>F, are used as dielectric materials for manufacturing electrical devices. The equivalent electrical capacitance and resistance are investigated in the presence of an external magnetic field, with flux density <i>B</i>. Based on the recorded data, we obtain the variation of the relative dielectric constant (<inline-formula><math display="inline"><semantics><mrow><msub><mi>ϵ</mi><mi mathvariant="normal">r</mi></msub><msup><mrow></mrow><mo>′</mo></msup></mrow></semantics></math></inline-formula>), and electrical conductivity (<inline-formula><math display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>), with <inline-formula><math display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula>, and <i>B</i>. We show that, by increasing <inline-formula><math display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula>, the distance between CI magnetic dipoles increases, and this leads to significant changes in the behaviour of <inline-formula><math display="inline"><semantics><mrow><msub><mi>ϵ</mi><mi mathvariant="normal">r</mi></msub><msup><mrow></mrow><mo>′</mo></msup></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> in a magnetic field. The results are explained by developing a theoretical model that is based on the dipolar approximation. They indicate that the obtained hMCs can be used in the fabrication of magneto-active fibers for fabrication of electric/magnetic field sensors and transducers.
topic magnetorheological suspensions
magnetodielectric effects
electrical properties
carbonyl iron
iron oxide microfibers
url https://www.mdpi.com/2079-4991/10/10/2060
work_keys_str_mv AT ioanbica hybridmagnetorheologicalcompositesforelectricandmagneticfieldsensorsandtransducers
AT eugenmirceaanitas hybridmagnetorheologicalcompositesforelectricandmagneticfieldsensorsandtransducers
AT liviuchirigiu hybridmagnetorheologicalcompositesforelectricandmagneticfieldsensorsandtransducers
_version_ 1724510288206626816