Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method

In this work, an accurate numerical modeling of the diffraction properties of transmission holographic polymer dispersed liquid crystal (H-PDLC) gratings is presented. The method considers ellipsoid geometry-based liquid crystal (LC) droplets with random properties regarding size and location across...

Full description

Bibliographic Details
Main Authors: Sergio Bleda, Jorge Francés, Sergi Gallego, Andrés Márquez, Cristian Neipp, Inmaculada Pascual, Augusto Beléndez
Format: Article
Language:English
Published: MDPI AG 2018-04-01
Series:Polymers
Subjects:
Online Access:http://www.mdpi.com/2073-4360/10/5/465
id doaj-528cff76bcd74097ab2811bd8f48c783
record_format Article
spelling doaj-528cff76bcd74097ab2811bd8f48c7832020-11-24T22:41:32ZengMDPI AGPolymers2073-43602018-04-0110546510.3390/polym10050465polym10050465Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain MethodSergio Bleda0Jorge Francés1Sergi Gallego2Andrés Márquez3Cristian Neipp4Inmaculada Pascual5Augusto Beléndez6Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, SpainInstituto Universitario de Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, SpainInstituto Universitario de Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, SpainInstituto Universitario de Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, SpainInstituto Universitario de Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, SpainInstituto Universitario de Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, SpainInstituto Universitario de Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, SpainIn this work, an accurate numerical modeling of the diffraction properties of transmission holographic polymer dispersed liquid crystal (H-PDLC) gratings is presented. The method considers ellipsoid geometry-based liquid crystal (LC) droplets with random properties regarding size and location across the H-PLDC layer and also the non-homogeneous orientation of the LC director within the droplet. The direction of the LC director inside the droplets can be varied to reproduce the effects of the external voltage applied in H-PDLC-based gratings. From the LC director distribution in the droplet, the permittivity tensor is defined, which establishes the optical anisotropy of the media, and it is used for numerically solving the light propagation through the system. In this work, the split-field finite-difference time-domain method (SF-FDTD) is applied. This method is suited for accurately analyzing periodic media, and it considers spatial and time discretisation of Maxwell’s equations. The scheme proposed here is used to investigate the influence on the diffraction properties of H-PDLC as a function of the droplets size and the bulk fraction of LC dispersed material.http://www.mdpi.com/2073-4360/10/5/465H-PDLCFDTDdiffraction efficiencyLD director distributionMonte Carlo
collection DOAJ
language English
format Article
sources DOAJ
author Sergio Bleda
Jorge Francés
Sergi Gallego
Andrés Márquez
Cristian Neipp
Inmaculada Pascual
Augusto Beléndez
spellingShingle Sergio Bleda
Jorge Francés
Sergi Gallego
Andrés Márquez
Cristian Neipp
Inmaculada Pascual
Augusto Beléndez
Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method
Polymers
H-PDLC
FDTD
diffraction efficiency
LD director distribution
Monte Carlo
author_facet Sergio Bleda
Jorge Francés
Sergi Gallego
Andrés Márquez
Cristian Neipp
Inmaculada Pascual
Augusto Beléndez
author_sort Sergio Bleda
title Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method
title_short Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method
title_full Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method
title_fullStr Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method
title_full_unstemmed Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method
title_sort numerical analysis of h-pdlc using the split-field finite-difference time-domain method
publisher MDPI AG
series Polymers
issn 2073-4360
publishDate 2018-04-01
description In this work, an accurate numerical modeling of the diffraction properties of transmission holographic polymer dispersed liquid crystal (H-PDLC) gratings is presented. The method considers ellipsoid geometry-based liquid crystal (LC) droplets with random properties regarding size and location across the H-PLDC layer and also the non-homogeneous orientation of the LC director within the droplet. The direction of the LC director inside the droplets can be varied to reproduce the effects of the external voltage applied in H-PDLC-based gratings. From the LC director distribution in the droplet, the permittivity tensor is defined, which establishes the optical anisotropy of the media, and it is used for numerically solving the light propagation through the system. In this work, the split-field finite-difference time-domain method (SF-FDTD) is applied. This method is suited for accurately analyzing periodic media, and it considers spatial and time discretisation of Maxwell’s equations. The scheme proposed here is used to investigate the influence on the diffraction properties of H-PDLC as a function of the droplets size and the bulk fraction of LC dispersed material.
topic H-PDLC
FDTD
diffraction efficiency
LD director distribution
Monte Carlo
url http://www.mdpi.com/2073-4360/10/5/465
work_keys_str_mv AT sergiobleda numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod
AT jorgefrances numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod
AT sergigallego numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod
AT andresmarquez numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod
AT cristianneipp numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod
AT inmaculadapascual numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod
AT augustobelendez numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod
_version_ 1725702098911232000