Enzymatic Synthesis of Highly Fluorescent 8-Azapurine Ribosides Using a Purine Nucleoside Phosphorylase Reverse Reaction: Variable Ribosylation Sites

Various forms of purine-nucleoside phosphorylase (PNP) were used as catalysts of enzymatic ribosylation of selected fluorescent 8-azapurines. It was found that the recombinant calf PNP catalyzes ribosylation of 2,6-diamino-8-azapurine in a phosphate-free medium, with ribose-1-phosphate as ribose don...

Full description

Bibliographic Details
Main Authors: Goran Mikleušević, Alicja Stachelska-Wierzchowska, Beata Wielgus-Kutrowska, Jacek Wierzchowski
Format: Article
Language:English
Published: MDPI AG 2013-10-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/18/10/12587
Description
Summary:Various forms of purine-nucleoside phosphorylase (PNP) were used as catalysts of enzymatic ribosylation of selected fluorescent 8-azapurines. It was found that the recombinant calf PNP catalyzes ribosylation of 2,6-diamino-8-azapurine in a phosphate-free medium, with ribose-1-phosphate as ribose donor, but the ribosylation site is predominantly N7 and N8, with the proportion of N8/N7 ribosylated products markedly dependent on the reaction conditions. Both products are fluorescent. Application of the E. coli PNP gave a mixture of N8 and N9-substituted ribosides. Fluorescence of the ribosylated 2,6-diamino-8-azapurine has been briefly characterized. The highest quantum yield, ~0.9, was obtained for N9-β-d-riboside (λmax 365 nm), while for N8-β-d-riboside, emitting at ~430 nm, the fluorescence quantum yield was found to be close to 0.4. Ribosylation of 8-azaguanine with calf PNP as a catalyst goes exclusively to N9. By contrast, the E. coli PNP ribosylates 8-azaGua predominantly at N9, with minor, but highly fluorescent products ribosylated at N8/N7.
ISSN:1420-3049