Research on Features of Pipeline Crack Signal Based on Weak Magnetic Method

Quantitative online detection of microcracks in long-distance oil and gas pipelines is an international problem, and the effective detection method is still lacking. In this paper, a mathematical model of non-uniform distribution of crack magnetic charges is established based on the stress distribut...

Full description

Bibliographic Details
Main Authors: Bin Liu, Ziqi Liu, Ning Luo, Luyao He, Jian Ren, He Zhang
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/3/810
Description
Summary:Quantitative online detection of microcracks in long-distance oil and gas pipelines is an international problem, and the effective detection method is still lacking. In this paper, a mathematical model of non-uniform distribution of crack magnetic charges is established based on the stress distribution laws of pipeline cracks under internal pressure. The weak magnetic signal characteristics of pipeline cracks with different sizes are analyzed. The internal pressure increasing factor of weak magnetic signals are extracted to analyze the corresponding relationship between crack size and weak magnetic signals. The experimental study of the X70 pipeline is carried out. The results show that the axial component of the weak magnetic signal at the crack has a maximum value near the tip, and a minimum value appears in the middle of the crack. The internal pressure increasing factor is introduced to quantify the weak magnetic signal, the crack is in a safe state (not expanding) when the internal pressure increasing factor is positive, the weak magnetic signal has a linear relationship with the crack size. However, the crack is in a dangerous state when the internal pressure increasing factor is negative, and the pipeline crack will expand as the internal pressure increases.
ISSN:1424-8220