Novel Dead-Time Compensation Strategy for Wide Current Range in a Three-Phase Inverter

This paper proposes a novel three-phase voltage source inverter dead-time compensation strategy for accurate compensation in wide current regions of the inverter. In particular, an analysis of the output voltage distortion of the inverter, which appears as parasitic components of the switches, was c...

Full description

Bibliographic Details
Main Authors: Jeong-Woo Lim, Hanyoung Bu, Younghoon Cho
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Electronics
Subjects:
Online Access:http://www.mdpi.com/2079-9292/8/1/92
Description
Summary:This paper proposes a novel three-phase voltage source inverter dead-time compensation strategy for accurate compensation in wide current regions of the inverter. In particular, an analysis of the output voltage distortion of the inverter, which appears as parasitic components of the switches, was conducted for proper voltage compensation in the low current region, and an on-line compensation voltage controller was proposed. Additionally, a new trapezoidal compensation voltage implementation method using the current phase was proposed to simplify realizing the trapezoidal shape of the three-phase compensation voltages. Finally, when the proposed dead-time compensation strategy was applied, the maximum phase voltage magnitude in the linear modulation voltage regions was defined to achieve smooth operation even at high modulation index. Simulations and experiments were conducted to verify the performance of the proposed dead-time compensation scheme.
ISSN:2079-9292