Profile of macular ganglion cell-inner plexiform layer thickness in healthy 6.5 year- old Swedish children

Abstract Background The purpose was to study the macular ganglion cell- inner plexiform layer (GC-IPL) thickness in healthy 6.5 year- old Swedish children using Optical Coherence Tomography (OCT) and to study topography symmetry within eyes and between eye pairs. Methods A total of 181 eyes of 92 he...

Full description

Bibliographic Details
Main Authors: Urszula Arnljots, Maria Nilsson, Ida Hed Myrberg, Ulrika Åden, Kerstin Hellgren
Format: Article
Language:English
Published: BMC 2020-08-01
Series:BMC Ophthalmology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12886-020-01601-y
Description
Summary:Abstract Background The purpose was to study the macular ganglion cell- inner plexiform layer (GC-IPL) thickness in healthy 6.5 year- old Swedish children using Optical Coherence Tomography (OCT) and to study topography symmetry within eyes and between eye pairs. Methods A total of 181 eyes of 92 healthy children (39 girls, 53 boys) aged 6.5 and serving as a term-born control group in the Extremely Preterm Infants in Sweden Study (EXPRESS), were examined with Cirrus HD-OCT. Main outcome measures were average and minimum values of GC-IPL thickness of the device’s predefined macular sectors. Single sectors, combined sectors defined as superior and inferior hemispheres and temporal and nasal sectors were evaluated. Intra-individual GC-IPL thickness between eye pairs was analyzed. Visual acuity, refraction and general cognition were assessed and correlated to GC-IPL outcome. Results Eighty-five children completed the OCT examination and 155 out of 181 scans (86%) were analyzed. The mean average GC-IPL thickness was 85.9 μm (± 5.3; 5th and 95th percentiles were 76.0 and 94.6 μm). The mean minimum GC-IPL thickness was 83.6 μm (± 4.9; 5th and 95th percentiles were 75.4 and 92.3 μm). The difference in thickness between nasal and temporal sectors and between superior and inferior hemisphere sectors were less than 2 μm. The difference between average GC-IPL thickness and minimum GC-IPL thickness was 2.3 μm (± 1.9; 5th and 95th percentiles were 0.0 and 6.0 μm). The difference between the thickest and thinnest sector within eye was 6.4 μm (± 2.2; 5th and 95th percentiles were 3.0 and 10.0 μm). There was a moderate correlation in the difference between the nasal combined and the temporal combined sectors within eye pairs (p < 0.0001, Spearman’s ρ 0.58). The average GC-IPL thickness was weakly positively correlated with SE (spherical equivalent; combined sphere and ½ cylinder) (p = 0.031, Spearman’s ρ 0.23). Conclusions This study provides normative GC-IPL thickness values for healthy 6.5 year- old Swedish children. The GC-IPL thickness variations within eyes and within eye pairs are generally small. It could therefore be assumed that larger variations are sensitive markers of focal GC-IPL thinning due to damage to the primary visual pathways in children.
ISSN:1471-2415