Summary: | Deforestation in peatland areas such as Kalimantan, Indonesia has been going on for decades. The deforestation has indirectly increased peatlands to become degraded and flammable. The Synthetic Aperture Radar (SAR) interferometry approach for identification of degraded peatlands can be performed using ALOS-2 PALSAR-2 data by converting land deformation data generated from SAR interferometry analysis into water table (WT) depth data using Wosten models. Peatlands with WT depth conditions of more than 40 cm are classified as degraded peatlands which are flammable. By using fire data from previous studies, this research confirms that identification of degraded peatlands using SAR interferometry approach by ALOS-2 PALSAR-2 is more reliable with high precision related to forest fires, with a precision level of 88% compared to 5% precision level using the WT depth monitoring system that has been installed in Central Kalimantan. The highest wavelength of ALOS-2 PALSAR-2 (L-Band) data can resolve the limitation due to temporal and volumetric decorrelation, compared to C-Band and X-Band satellite data. The combination methods of SAR interferometry approach and the real-time WT depth monitoring system to identify degraded peatlands can be more efficient, faster, and accurate. The advantage of this research result shows that SAR interferometry analysis can reach blank spot areas that are not covered by the observation station of WT depth monitoring system. It also gives a benefit as a guide to select precise locations of observation stations related to degraded peatland and forest fire.
|