Ore Extensions for the Sweedler’s Hopf Algebra <i>H</i><sub>4</sub>

The aim of this paper is to classify all Hopf algebra structures on the quotient of Ore extensions <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">H</mi><mn>4</mn></msub><...

Full description

Bibliographic Details
Main Authors: Shilin Yang, Yongfeng Zhang
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/8/1293
id doaj-53d3c961194b487eb25b03ea90305280
record_format Article
spelling doaj-53d3c961194b487eb25b03ea903052802020-11-25T03:48:29ZengMDPI AGMathematics2227-73902020-08-0181293129310.3390/math8081293Ore Extensions for the Sweedler’s Hopf Algebra <i>H</i><sub>4</sub>Shilin Yang0Yongfeng Zhang1School of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, ChinaSchool of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, ChinaThe aim of this paper is to classify all Hopf algebra structures on the quotient of Ore extensions <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">H</mi><mn>4</mn></msub><mrow><mo>[</mo><mi>z</mi><mo>;</mo><mi>σ</mi><mo>]</mo></mrow></mrow></semantics></math></inline-formula> of automorphism type for the Sweedler<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mo>′</mo></msup></semantics></math></inline-formula>s 4-dimensional Hopf algebra <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">H</mi><mn>4</mn></msub></semantics></math></inline-formula>. Firstly, we calculate all equivalent classes of twisted homomorphisms <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><mi>J</mi><mo>)</mo></mrow></semantics></math></inline-formula> for <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">H</mi><mn>4</mn></msub></semantics></math></inline-formula>. Then we give the classification of all bialgebra (Hopf algebra) structures on the quotients of <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">H</mi><mn>4</mn></msub><mrow><mo>[</mo><mi>z</mi><mo>;</mo><mi>σ</mi><mo>]</mo></mrow></mrow></semantics></math></inline-formula> up to isomorphism.https://www.mdpi.com/2227-7390/8/8/1293Ore extensionDrinfeld twisttwisted homomorphismHopf algebra
collection DOAJ
language English
format Article
sources DOAJ
author Shilin Yang
Yongfeng Zhang
spellingShingle Shilin Yang
Yongfeng Zhang
Ore Extensions for the Sweedler’s Hopf Algebra <i>H</i><sub>4</sub>
Mathematics
Ore extension
Drinfeld twist
twisted homomorphism
Hopf algebra
author_facet Shilin Yang
Yongfeng Zhang
author_sort Shilin Yang
title Ore Extensions for the Sweedler’s Hopf Algebra <i>H</i><sub>4</sub>
title_short Ore Extensions for the Sweedler’s Hopf Algebra <i>H</i><sub>4</sub>
title_full Ore Extensions for the Sweedler’s Hopf Algebra <i>H</i><sub>4</sub>
title_fullStr Ore Extensions for the Sweedler’s Hopf Algebra <i>H</i><sub>4</sub>
title_full_unstemmed Ore Extensions for the Sweedler’s Hopf Algebra <i>H</i><sub>4</sub>
title_sort ore extensions for the sweedler’s hopf algebra <i>h</i><sub>4</sub>
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-08-01
description The aim of this paper is to classify all Hopf algebra structures on the quotient of Ore extensions <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">H</mi><mn>4</mn></msub><mrow><mo>[</mo><mi>z</mi><mo>;</mo><mi>σ</mi><mo>]</mo></mrow></mrow></semantics></math></inline-formula> of automorphism type for the Sweedler<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mo>′</mo></msup></semantics></math></inline-formula>s 4-dimensional Hopf algebra <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">H</mi><mn>4</mn></msub></semantics></math></inline-formula>. Firstly, we calculate all equivalent classes of twisted homomorphisms <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><mi>J</mi><mo>)</mo></mrow></semantics></math></inline-formula> for <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">H</mi><mn>4</mn></msub></semantics></math></inline-formula>. Then we give the classification of all bialgebra (Hopf algebra) structures on the quotients of <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">H</mi><mn>4</mn></msub><mrow><mo>[</mo><mi>z</mi><mo>;</mo><mi>σ</mi><mo>]</mo></mrow></mrow></semantics></math></inline-formula> up to isomorphism.
topic Ore extension
Drinfeld twist
twisted homomorphism
Hopf algebra
url https://www.mdpi.com/2227-7390/8/8/1293
work_keys_str_mv AT shilinyang oreextensionsforthesweedlershopfalgebraihisub4sub
AT yongfengzhang oreextensionsforthesweedlershopfalgebraihisub4sub
_version_ 1724498757019500544