Defining clusters of young autistic and typically developing children based on loudness-dependent auditory electrophysiological responses

Abstract Background Autistic individuals exhibit atypical patterns of sensory processing that are known to be related to quality of life, but which are also highly heterogeneous. Previous investigations of this heterogeneity have ordinarily used questionnaires and have rarely investigated sensory pr...

Full description

Bibliographic Details
Main Authors: Patrick Dwyer, Xiaodong Wang, Rosanna De Meo-Monteil, Fushing Hsieh, Clifford D. Saron, Susan M. Rivera
Format: Article
Language:English
Published: BMC 2020-06-01
Series:Molecular Autism
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13229-020-00352-3
Description
Summary:Abstract Background Autistic individuals exhibit atypical patterns of sensory processing that are known to be related to quality of life, but which are also highly heterogeneous. Previous investigations of this heterogeneity have ordinarily used questionnaires and have rarely investigated sensory processing in typical development (TD) alongside autism spectrum development (ASD). Methods The present study used hierarchical clustering in a large sample to identify subgroups of young autistic and typically developing children based on the normalized global field power (GFP) of their event-related potentials (ERPs) to auditory stimuli of four different loudness intensities (50, 60, 70, 80 dB SPL): that is, based on an index of the relative strengths of their neural responses across these loudness conditions. Results Four clusters of participants were defined. Normalized GFP responses to sounds of different intensities differed strongly across clusters. There was considerable overlap in cluster assignments of autistic and typically developing participants, but autistic participants were more likely to display a pattern of relatively linear increases in response strength accompanied by a disproportionately strong response to 70 dB stimuli. Autistic participants displaying this pattern trended towards obtaining higher scores on assessments of cognitive abilities. There was also a trend for typically developing participants to disproportionately fall into a cluster characterized by disproportionately/nonlinearly strong 60 dB responses. Greater auditory distractibility was reported among autistic participants in a cluster characterized by disproportionately strong responses to the loudest (80 dB) sounds, and furthermore, relatively strong responses to loud sounds were correlated with auditory distractibility. This appears to provide evidence of coinciding behavioral and neural sensory atypicalities. Limitations Replication may be needed to verify exploratory results. This analysis does not address variability related to classical ERP latencies and topographies. The sensory questionnaire employed was not specifically designed for use in autism. Hearing acuity was not measured. Variability in sensory responses unrelated to loudness is not addressed, leaving room for additional research. Conclusions Taken together, these data demonstrate the broader benefits of using electrophysiology to explore individual differences. They illuminate different neural response patterns and suggest relationships between sensory neural responses and sensory behaviors, cognitive abilities, and autism diagnostic status.
ISSN:2040-2392