Potentiostatically Poised Electrodes Mimic Iron Oxide and Interact with Soil Microbial Communities to Alter the Biogeochemistry of Arctic Peat Soils

Dissimilatory metal-reducing bacteria are ubiquitous in soils worldwide, possess the ability to transfer electrons outside of their cell membranes, and are capable of respiring with various metal oxides. Reduction of iron oxides is one of the more energetically favorable forms of anaerobic respirati...

Full description

Bibliographic Details
Main Authors: Largus T. Angenent, Kimberley E. Miller, Elliot S. Friedman, David A. Lipson
Format: Article
Language:English
Published: MDPI AG 2013-09-01
Series:Minerals
Subjects:
Online Access:http://www.mdpi.com/2075-163X/3/3/318
id doaj-549ba05a7ff344fa868e00a8e3a99d32
record_format Article
spelling doaj-549ba05a7ff344fa868e00a8e3a99d322020-11-25T00:15:13ZengMDPI AGMinerals2075-163X2013-09-013331833610.3390/min3030318Potentiostatically Poised Electrodes Mimic Iron Oxide and Interact with Soil Microbial Communities to Alter the Biogeochemistry of Arctic Peat SoilsLargus T. AngenentKimberley E. MillerElliot S. FriedmanDavid A. LipsonDissimilatory metal-reducing bacteria are ubiquitous in soils worldwide, possess the ability to transfer electrons outside of their cell membranes, and are capable of respiring with various metal oxides. Reduction of iron oxides is one of the more energetically favorable forms of anaerobic respiration, with a higher energy yield than both sulfate reduction and methanogenesis. As such, this process has significant implications for soil carbon balances, especially in the saturated, carbon-rich soils of the northern latitudes. However, the dynamics of these microbial processes within the context of the greater soil microbiome remain largely unstudied. Previously, we have demonstrated the capability of potentiostatically poised electrodes to mimic the redox potential of iron(III)- and humic acid-compounds and obtain a measure of metal-reducing respiration. Here, we extend this work by utilizing poised electrodes to provide an inexaustable electron acceptor for iron- and humic acid-reducing microbes, and by measuring the effects on both microbial community structure and greenhouse gas emissions. The application of both nonpoised and poised graphite electrodes in peat soils stimulated methane emissions by 15%–43% compared to soils without electrodes. Poised electrodes resulted in higher (13%–24%) methane emissions than the nonpoised electrodes. The stimulation of methane emissions for both nonpoised and poised electrodes correlated with the enrichment of proteobacteria, verrucomicrobia, and bacteroidetes. Here, we demonstrate a tool for precisely manipulating localized redox conditions in situ (via poised electrodes) and for connecting microbial community dynamics with larger ecosystem processes. This work provides a foundation for further studies examining the role of dissimilatory metal-reducing bacteria in global biogeochemical cycles.http://www.mdpi.com/2075-163X/3/3/318anaerobic respirationbioelectrochemical systemsmicrobial food webArctic peat soilstundra biogeochemistry
collection DOAJ
language English
format Article
sources DOAJ
author Largus T. Angenent
Kimberley E. Miller
Elliot S. Friedman
David A. Lipson
spellingShingle Largus T. Angenent
Kimberley E. Miller
Elliot S. Friedman
David A. Lipson
Potentiostatically Poised Electrodes Mimic Iron Oxide and Interact with Soil Microbial Communities to Alter the Biogeochemistry of Arctic Peat Soils
Minerals
anaerobic respiration
bioelectrochemical systems
microbial food web
Arctic peat soils
tundra biogeochemistry
author_facet Largus T. Angenent
Kimberley E. Miller
Elliot S. Friedman
David A. Lipson
author_sort Largus T. Angenent
title Potentiostatically Poised Electrodes Mimic Iron Oxide and Interact with Soil Microbial Communities to Alter the Biogeochemistry of Arctic Peat Soils
title_short Potentiostatically Poised Electrodes Mimic Iron Oxide and Interact with Soil Microbial Communities to Alter the Biogeochemistry of Arctic Peat Soils
title_full Potentiostatically Poised Electrodes Mimic Iron Oxide and Interact with Soil Microbial Communities to Alter the Biogeochemistry of Arctic Peat Soils
title_fullStr Potentiostatically Poised Electrodes Mimic Iron Oxide and Interact with Soil Microbial Communities to Alter the Biogeochemistry of Arctic Peat Soils
title_full_unstemmed Potentiostatically Poised Electrodes Mimic Iron Oxide and Interact with Soil Microbial Communities to Alter the Biogeochemistry of Arctic Peat Soils
title_sort potentiostatically poised electrodes mimic iron oxide and interact with soil microbial communities to alter the biogeochemistry of arctic peat soils
publisher MDPI AG
series Minerals
issn 2075-163X
publishDate 2013-09-01
description Dissimilatory metal-reducing bacteria are ubiquitous in soils worldwide, possess the ability to transfer electrons outside of their cell membranes, and are capable of respiring with various metal oxides. Reduction of iron oxides is one of the more energetically favorable forms of anaerobic respiration, with a higher energy yield than both sulfate reduction and methanogenesis. As such, this process has significant implications for soil carbon balances, especially in the saturated, carbon-rich soils of the northern latitudes. However, the dynamics of these microbial processes within the context of the greater soil microbiome remain largely unstudied. Previously, we have demonstrated the capability of potentiostatically poised electrodes to mimic the redox potential of iron(III)- and humic acid-compounds and obtain a measure of metal-reducing respiration. Here, we extend this work by utilizing poised electrodes to provide an inexaustable electron acceptor for iron- and humic acid-reducing microbes, and by measuring the effects on both microbial community structure and greenhouse gas emissions. The application of both nonpoised and poised graphite electrodes in peat soils stimulated methane emissions by 15%–43% compared to soils without electrodes. Poised electrodes resulted in higher (13%–24%) methane emissions than the nonpoised electrodes. The stimulation of methane emissions for both nonpoised and poised electrodes correlated with the enrichment of proteobacteria, verrucomicrobia, and bacteroidetes. Here, we demonstrate a tool for precisely manipulating localized redox conditions in situ (via poised electrodes) and for connecting microbial community dynamics with larger ecosystem processes. This work provides a foundation for further studies examining the role of dissimilatory metal-reducing bacteria in global biogeochemical cycles.
topic anaerobic respiration
bioelectrochemical systems
microbial food web
Arctic peat soils
tundra biogeochemistry
url http://www.mdpi.com/2075-163X/3/3/318
work_keys_str_mv AT largustangenent potentiostaticallypoisedelectrodesmimicironoxideandinteractwithsoilmicrobialcommunitiestoalterthebiogeochemistryofarcticpeatsoils
AT kimberleyemiller potentiostaticallypoisedelectrodesmimicironoxideandinteractwithsoilmicrobialcommunitiestoalterthebiogeochemistryofarcticpeatsoils
AT elliotsfriedman potentiostaticallypoisedelectrodesmimicironoxideandinteractwithsoilmicrobialcommunitiestoalterthebiogeochemistryofarcticpeatsoils
AT davidalipson potentiostaticallypoisedelectrodesmimicironoxideandinteractwithsoilmicrobialcommunitiestoalterthebiogeochemistryofarcticpeatsoils
_version_ 1725388034236481536