ASSESSMENT OF A PORTABLE TOF CAMERA AND COMPARISON WITH SMARTPHONE STEREO VISION

Nowadays time-of-flight (ToF) cameras and multiple RGB cameras are being embedded in an increasing number of high-end smartphones: despite their integration in mobile devices is mostly motivated by photographic applications, their availability can be exploited to enable 3D reconstructions directly o...

Full description

Bibliographic Details
Main Authors: A. Masiero, A. Guarnieri, A. Vettore
Format: Article
Language:English
Published: Copernicus Publications 2019-11-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W17/187/2019/isprs-archives-XLII-2-W17-187-2019.pdf
id doaj-549eacf3a95c4d2cb862e715b3e04416
record_format Article
spelling doaj-549eacf3a95c4d2cb862e715b3e044162020-11-25T02:22:51ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342019-11-01XLII-2-W1718719310.5194/isprs-archives-XLII-2-W17-187-2019ASSESSMENT OF A PORTABLE TOF CAMERA AND COMPARISON WITH SMARTPHONE STEREO VISIONA. Masiero0A. Guarnieri1A. Vettore2Interdepartmental Research Center of Geomatics (CIRGEO), University of Padova, Viale dell’Università 16, Legnaro (PD) 35020, ItalyInterdepartmental Research Center of Geomatics (CIRGEO), University of Padova, Viale dell’Università 16, Legnaro (PD) 35020, ItalyInterdepartmental Research Center of Geomatics (CIRGEO), University of Padova, Viale dell’Università 16, Legnaro (PD) 35020, ItalyNowadays time-of-flight (ToF) cameras and multiple RGB cameras are being embedded in an increasing number of high-end smartphones: despite their integration in mobile devices is mostly motivated by photographic applications, their availability can be exploited to enable 3D reconstructions directly on smartphones. Furthermore, even when a ToF camera is not embedded in a smartphone, low cost solutions are available on the market in order to easily provide standard mobile devices with a lightweight and extremely portable ToF camera. This work deals with the assessment of a low cost ToF camera, namely Pico Zense DCAM710, which perfectly fits with the above description. According to the results obtained in the considered tests, the ranging error (precision) of the DCAM710 camera increases linearly approximately up to the nominal maximum range in the considered working mode, up to approximately 1 cm. Despite the device allows to acquire measurements also at larger ranges, the measurement quality significantly worsen. After assessing the main characteristics of such ToF camera, this paper aims at comparing its 3D reconstruction ability with that of a smartphone stereo vision system. In particular, the comparison of a 3D reconstruction obtained with stereo vision from images acquired with an LG G6 shows that the stereo reconstruction leads to a much larger point cloud. However, points generated by the ToF camera are more homogeneously distributed, and they seem to slightly better describe the real geometry of the reconstructed object. The combination of such two technologies, which will be investigated in our future work, can potentially lead to a denser cloud with respect to the ToF camera, while preserving a reasonable accuracy.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W17/187/2019/isprs-archives-XLII-2-W17-187-2019.pdf
collection DOAJ
language English
format Article
sources DOAJ
author A. Masiero
A. Guarnieri
A. Vettore
spellingShingle A. Masiero
A. Guarnieri
A. Vettore
ASSESSMENT OF A PORTABLE TOF CAMERA AND COMPARISON WITH SMARTPHONE STEREO VISION
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
author_facet A. Masiero
A. Guarnieri
A. Vettore
author_sort A. Masiero
title ASSESSMENT OF A PORTABLE TOF CAMERA AND COMPARISON WITH SMARTPHONE STEREO VISION
title_short ASSESSMENT OF A PORTABLE TOF CAMERA AND COMPARISON WITH SMARTPHONE STEREO VISION
title_full ASSESSMENT OF A PORTABLE TOF CAMERA AND COMPARISON WITH SMARTPHONE STEREO VISION
title_fullStr ASSESSMENT OF A PORTABLE TOF CAMERA AND COMPARISON WITH SMARTPHONE STEREO VISION
title_full_unstemmed ASSESSMENT OF A PORTABLE TOF CAMERA AND COMPARISON WITH SMARTPHONE STEREO VISION
title_sort assessment of a portable tof camera and comparison with smartphone stereo vision
publisher Copernicus Publications
series The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
issn 1682-1750
2194-9034
publishDate 2019-11-01
description Nowadays time-of-flight (ToF) cameras and multiple RGB cameras are being embedded in an increasing number of high-end smartphones: despite their integration in mobile devices is mostly motivated by photographic applications, their availability can be exploited to enable 3D reconstructions directly on smartphones. Furthermore, even when a ToF camera is not embedded in a smartphone, low cost solutions are available on the market in order to easily provide standard mobile devices with a lightweight and extremely portable ToF camera. This work deals with the assessment of a low cost ToF camera, namely Pico Zense DCAM710, which perfectly fits with the above description. According to the results obtained in the considered tests, the ranging error (precision) of the DCAM710 camera increases linearly approximately up to the nominal maximum range in the considered working mode, up to approximately 1 cm. Despite the device allows to acquire measurements also at larger ranges, the measurement quality significantly worsen. After assessing the main characteristics of such ToF camera, this paper aims at comparing its 3D reconstruction ability with that of a smartphone stereo vision system. In particular, the comparison of a 3D reconstruction obtained with stereo vision from images acquired with an LG G6 shows that the stereo reconstruction leads to a much larger point cloud. However, points generated by the ToF camera are more homogeneously distributed, and they seem to slightly better describe the real geometry of the reconstructed object. The combination of such two technologies, which will be investigated in our future work, can potentially lead to a denser cloud with respect to the ToF camera, while preserving a reasonable accuracy.
url https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W17/187/2019/isprs-archives-XLII-2-W17-187-2019.pdf
work_keys_str_mv AT amasiero assessmentofaportabletofcameraandcomparisonwithsmartphonestereovision
AT aguarnieri assessmentofaportabletofcameraandcomparisonwithsmartphonestereovision
AT avettore assessmentofaportabletofcameraandcomparisonwithsmartphonestereovision
_version_ 1724861466026180608