Evaluation of the Isolated Bacteria from Activated Sludge of Asalouyeh Special Zone Municipal Wastewater Treatment for Bioaugmentation of Kerosene-Contaminated Soils

Background and Objectives: Bioaugmentation is a superior technique in bioremediation of contaminated soils with petroleum hydrocarbons. The aim of this study was to evaluate the effect of isolated bacteria from activated sludge of Asalouyeh special zone municipal wastewater treatment for bioaugmenta...

Full description

Bibliographic Details
Main Authors: F Kafilzadeh, Z Khaledi
Format: Article
Language:fas
Published: Tehran University of Medical Sciences 2016-09-01
Series:سلامت و محیط
Subjects:
Online Access:http://ijhe.tums.ac.ir/browse.php?a_code=A-10-772-1&slc_lang=en&sid=1
Description
Summary:Background and Objectives: Bioaugmentation is a superior technique in bioremediation of contaminated soils with petroleum hydrocarbons. The aim of this study was to evaluate the effect of isolated bacteria from activated sludge of Asalouyeh special zone municipal wastewater treatment for bioaugmentation of kerosene-contaminated soils and to study the growth of isolated bacteria in the presence of different concentrations of this product. Materials and Methods: Sampling of activated sludge was carried out from two treatment plants in Asalouyeh zone. Isolation of degrading bacteria was performed by culturing the samples on basal mineral medium. Emulsification test and evaluating the kinetic growth of bacteria were carried out in different concentrations of kerosene. Isolated bacteria were inoculated to polluted soils with kerosene oil compound for bioaugmentation and measuring their bioremediation potentials and the rate of biodegradation were measured by InfraRed (IR) spectroscopy. Results: In this study, three bacterias: Pseudomonas putida, Serratia marcescens, and Proteus mirabilis were isolated and identified as kerosene degrading bacterias from activated sludge. P. putida was recognized as the most powerful degrading bacterium of this oil product according to the emulsification tests, measuring the growth of bacteria in various concentrations of kerosene, the results of bioaugmentation of contaminated column of soil with kerosene, and reducing the level of Total Petroleum Hydrocarbons (TPHs). This bacterium with emulsification rate of 3.8 could reduce 71.03% of TPHs within 30 days.    Conclusion: According to the adaption of Pseudomonas putida, Serratia marcescens, and Proteus mirabilis in activated sludge with variety of pollutants in sewage, they can be used as non-indigenous bacteria for bioaugmentation and cleaning up the soil contaminated petroleum hydrocarbons.
ISSN:2008-2029
2008-3718