Non-Structural Carbohydrate Dynamics in Leaves and Branches of Pinus massoniana (Lamb.) Following 3-Year Rainfall Exclusion

Drought-induced tree mortality is an increasing and global ecological problem. Stored non-structural carbohydrates (NSCs) may be a key determinant of drought resistance, but most existing studies are temporally limited. In this study, a 3-year 100% rainfall exclusion manipulation experiment was cond...

Full description

Bibliographic Details
Main Authors: Tian Lin, Huaizhou Zheng, Zhihong Huang, Jian Wang, Jinmao Zhu
Format: Article
Language:English
Published: MDPI AG 2018-06-01
Series:Forests
Subjects:
Online Access:http://www.mdpi.com/1999-4907/9/6/315
Description
Summary:Drought-induced tree mortality is an increasing and global ecological problem. Stored non-structural carbohydrates (NSCs) may be a key determinant of drought resistance, but most existing studies are temporally limited. In this study, a 3-year 100% rainfall exclusion manipulation experiment was conducted to evaluate the response of NSC dynamics to drought stress in 25-year-old Pinus massoniana leaves and branches. The results showed: (1) compared with the control condition, leaf NSC concentration in the drought treatment increased 90% in the early stage (days 115–542) (p < 0.05), and then decreased 15% in the late stage (days 542–1032), which was attributed to water limitation instead of phenology; (2) the response of leaf NSCs to drought was more significant than branch NSCs, demonstrating a time lag effect; and (3) the response of P. massoniana to mild drought stress was to increase the soluble sugars and starch in the early stage, followed by an increase in soluble sugars caused by decreasing starch in the later stress period. Considering these results, mid-term drought stress had no significant effect on the total NSC concentration in P. massoniana, removing carbon storage as a potential adaptation to drought stress.
ISSN:1999-4907