Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD).

In humans, mutations in electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETFDH) lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We...

Full description

Bibliographic Details
Main Authors: Yuanquan Song, Mary A Selak, Corey T Watson, Christopher Coutts, Paul C Scherer, Jessica A Panzer, Sarah Gibbs, Marion O Scott, Gregory Willer, Ronald G Gregg, Declan W Ali, Michael J Bennett, Rita J Balice-Gordon
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2009-12-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2791221?pdf=render
Description
Summary:In humans, mutations in electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETFDH) lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We show that a zebrafish mutant in ETFDH, xavier, and fibroblast cells from MADD patients demonstrate similar mitochondrial and metabolic abnormalities, including reduced oxidative phosphorylation, increased aerobic glycolysis, and upregulation of the PPARG-ERK pathway. This metabolic dysfunction is associated with aberrant neural proliferation in xav, in addition to other neural phenotypes and paralysis. Strikingly, a PPARG antagonist attenuates aberrant neural proliferation and alleviates paralysis in xav, while PPARG agonists increase neural proliferation in wild type embryos. These results show that mitochondrial dysfunction, leading to an increase in aerobic glycolysis, affects neurogenesis through the PPARG-ERK pathway, a potential target for therapeutic intervention.
ISSN:1932-6203