DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins

Abstract Background Protein ubiquitination occurs when the ubiquitin protein binds to a target protein residue of lysine (K), and it is an important regulator of many cellular functions, such as signal transduction, cell division, and immune reactions, in eukaryotes. Experimental and clinical studie...

Full description

Bibliographic Details
Main Authors: Hongli Fu, Yingxi Yang, Xiaobo Wang, Hui Wang, Yan Xu
Format: Article
Language:English
Published: BMC 2019-02-01
Series:BMC Bioinformatics
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12859-019-2677-9
Description
Summary:Abstract Background Protein ubiquitination occurs when the ubiquitin protein binds to a target protein residue of lysine (K), and it is an important regulator of many cellular functions, such as signal transduction, cell division, and immune reactions, in eukaryotes. Experimental and clinical studies have shown that ubiquitination plays a key role in several human diseases, and recent advances in proteomic technology have spurred interest in identifying ubiquitination sites. However, most current computing tools for predicting target sites are based on small-scale data and shallow machine learning algorithms. Results As more experimentally validated ubiquitination sites emerge, we need to design a predictor that can identify lysine ubiquitination sites in large-scale proteome data. In this work, we propose a deep learning predictor, DeepUbi, based on convolutional neural networks. Four different features are adopted from the sequences and physicochemical properties. In a 10-fold cross validation, DeepUbi obtains an AUC (area under the Receiver Operating Characteristic curve) of 0.9, and the accuracy, sensitivity and specificity exceeded 85%. The more comprehensive indicator, MCC, reaches 0.78. We also develop a software package that can be freely downloaded from https://github.com/Sunmile/DeepUbi. Conclusion Our results show that DeepUbi has excellent performance in predicting ubiquitination based on large data.
ISSN:1471-2105