Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: Comparison of young and aged testes in mice.

Human epidemiological studies have shown that paternal aging as one of the risk factors for neurodevelopmental disorders, such as autism, in offspring. A recent study has suggested that factors other than de novo mutations due to aging can influence the biology of offspring. Here, we focused on epig...

Full description

Bibliographic Details
Main Authors: Misako Tatehana, Ryuichi Kimura, Kentaro Mochizuki, Hitoshi Inada, Noriko Osumi
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0230930
id doaj-5595ac88e54f4d688b6fd06edcec42ba
record_format Article
spelling doaj-5595ac88e54f4d688b6fd06edcec42ba2021-03-03T22:04:38ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-01154e023093010.1371/journal.pone.0230930Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: Comparison of young and aged testes in mice.Misako TatehanaRyuichi KimuraKentaro MochizukiHitoshi InadaNoriko OsumiHuman epidemiological studies have shown that paternal aging as one of the risk factors for neurodevelopmental disorders, such as autism, in offspring. A recent study has suggested that factors other than de novo mutations due to aging can influence the biology of offspring. Here, we focused on epigenetic alterations in sperm that can influence developmental programs in offspring. In this study, we qualitatively and semiquantitatively evaluated histone modification patterns in male germline cells throughout spermatogenesis based on immunostaining of testes taken from young (3 months old) and aged (12 months old) mice. Although localization patterns were not obviously changed between young and aged testes, some histone modification showed differences in their intensity. Among histone modifications that repress gene expression, histone H3 lysine 9 trimethylation (H3K9me3) was decreased in the male germline cells of the aged testis, while H3K27me2/3 was increased. The intensity of H3K27 acetylation (ac), an active mark, was lower/higher depending on the stages in the aged testis. Interestingly, H3K27ac was detected on the putative sex chromosomes of round spermatids, while other chromosomes were occupied by a repressive mark, H3K27me3. Among other histone modifications that activate gene expression, H3K4me2 was drastically decreased in the male germline cells of the aged testis. In contrast, H3K79me3 was increased in M-phase spermatocytes, where it accumulates on the sex chromosomes. Therefore, aging induced alterations in the amount of histone modifications and in the differences of patterns for each modification. Moreover, histone modifications on the sex chromosomes and on other chromosomes seems to be differentially regulated by aging. These findings will help elucidate the epigenetic mechanisms underlying the influence of paternal aging on offspring development.https://doi.org/10.1371/journal.pone.0230930
collection DOAJ
language English
format Article
sources DOAJ
author Misako Tatehana
Ryuichi Kimura
Kentaro Mochizuki
Hitoshi Inada
Noriko Osumi
spellingShingle Misako Tatehana
Ryuichi Kimura
Kentaro Mochizuki
Hitoshi Inada
Noriko Osumi
Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: Comparison of young and aged testes in mice.
PLoS ONE
author_facet Misako Tatehana
Ryuichi Kimura
Kentaro Mochizuki
Hitoshi Inada
Noriko Osumi
author_sort Misako Tatehana
title Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: Comparison of young and aged testes in mice.
title_short Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: Comparison of young and aged testes in mice.
title_full Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: Comparison of young and aged testes in mice.
title_fullStr Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: Comparison of young and aged testes in mice.
title_full_unstemmed Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: Comparison of young and aged testes in mice.
title_sort comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: comparison of young and aged testes in mice.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2020-01-01
description Human epidemiological studies have shown that paternal aging as one of the risk factors for neurodevelopmental disorders, such as autism, in offspring. A recent study has suggested that factors other than de novo mutations due to aging can influence the biology of offspring. Here, we focused on epigenetic alterations in sperm that can influence developmental programs in offspring. In this study, we qualitatively and semiquantitatively evaluated histone modification patterns in male germline cells throughout spermatogenesis based on immunostaining of testes taken from young (3 months old) and aged (12 months old) mice. Although localization patterns were not obviously changed between young and aged testes, some histone modification showed differences in their intensity. Among histone modifications that repress gene expression, histone H3 lysine 9 trimethylation (H3K9me3) was decreased in the male germline cells of the aged testis, while H3K27me2/3 was increased. The intensity of H3K27 acetylation (ac), an active mark, was lower/higher depending on the stages in the aged testis. Interestingly, H3K27ac was detected on the putative sex chromosomes of round spermatids, while other chromosomes were occupied by a repressive mark, H3K27me3. Among other histone modifications that activate gene expression, H3K4me2 was drastically decreased in the male germline cells of the aged testis. In contrast, H3K79me3 was increased in M-phase spermatocytes, where it accumulates on the sex chromosomes. Therefore, aging induced alterations in the amount of histone modifications and in the differences of patterns for each modification. Moreover, histone modifications on the sex chromosomes and on other chromosomes seems to be differentially regulated by aging. These findings will help elucidate the epigenetic mechanisms underlying the influence of paternal aging on offspring development.
url https://doi.org/10.1371/journal.pone.0230930
work_keys_str_mv AT misakotatehana comprehensivehistochemicalprofilesofhistonemodificationinmalegermlinecellsduringmeiosisandspermiogenesiscomparisonofyoungandagedtestesinmice
AT ryuichikimura comprehensivehistochemicalprofilesofhistonemodificationinmalegermlinecellsduringmeiosisandspermiogenesiscomparisonofyoungandagedtestesinmice
AT kentaromochizuki comprehensivehistochemicalprofilesofhistonemodificationinmalegermlinecellsduringmeiosisandspermiogenesiscomparisonofyoungandagedtestesinmice
AT hitoshiinada comprehensivehistochemicalprofilesofhistonemodificationinmalegermlinecellsduringmeiosisandspermiogenesiscomparisonofyoungandagedtestesinmice
AT norikoosumi comprehensivehistochemicalprofilesofhistonemodificationinmalegermlinecellsduringmeiosisandspermiogenesiscomparisonofyoungandagedtestesinmice
_version_ 1714813571150381056