Evaluation of the behavior of an innovative thermally activated building system (TABS) with PCM for an efficient design

The global energy crisis has caused a double effect. On the one hand, users are increasingly aware of the energy cost they face. On the other hand, public administrations have become aware of the importance of limiting energy consumption in buildings as a way to combat climate change and reduce the...

Full description

Bibliographic Details
Main Authors: Guerrero MCarmen, Sánchez José, Álvarez Servando, Antonio Tenorio José, Cabeza Luisa F., Bartolomé Cesar, Pavón MCarmen
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2019/37/e3sconf_clima2019_03043.pdf
Description
Summary:The global energy crisis has caused a double effect. On the one hand, users are increasingly aware of the energy cost they face. On the other hand, public administrations have become aware of the importance of limiting energy consumption in buildings as a way to combat climate change and reduce the energy dependence with the climate. This situation supposes a great opportunity for innovative constructive solutions with an energetic behaviour that surpasses the traditional approach of reduction of the transmittance. In this work, studies are presented to obtain potential of a new solution thermally activated with two innovations with respect to those existing in the market: its activation is done by hot / cold water produced by renewable systems; and its concrete structural element in addition to having coupled the heat exchanger presents an innovative mortar doped with PCM microencapsulated phase change material.
ISSN:2267-1242