Numerical analysis of natural gas pressure during coal and gas outbursts

Abstract Any disturbance in the ventilation system of a mine during a coal and gas outburst can lead to secondary disasters. This is because, on the one hand, the expansion power of the outburst source makes the airflow in the ventilation system countercurrent, causing the gas in this system to exce...

Full description

Bibliographic Details
Main Authors: Zongxiang Li, Jingxiao Yu, Yu Liu, MingQian Zhang, Feng Geng, HongJie Zhang, ChunTong Miao
Format: Article
Language:English
Published: Wiley 2021-08-01
Series:Energy Science & Engineering
Subjects:
Online Access:https://doi.org/10.1002/ese3.872
id doaj-56495be1e45041e992546f2ee74ab5b5
record_format Article
spelling doaj-56495be1e45041e992546f2ee74ab5b52021-08-03T15:52:59ZengWileyEnergy Science & Engineering2050-05052021-08-01981068107910.1002/ese3.872Numerical analysis of natural gas pressure during coal and gas outburstsZongxiang Li0Jingxiao Yu1Yu Liu2MingQian Zhang3Feng Geng4HongJie Zhang5ChunTong Miao6College of Safety Science and Engineering Liaoning Technical University Fuxin Liaoning ChinaCollege of Safety Science and Engineering Liaoning Technical University Fuxin Liaoning ChinaCollege of Safety Science and Engineering Liaoning Technical University Fuxin Liaoning ChinaCollege of Safety Science and Engineering Liaoning Technical University Fuxin Liaoning ChinaCollege of Safety Science and Engineering Liaoning Technical University Fuxin Liaoning ChinaCollege of Safety Science and Engineering Liaoning Technical University Fuxin Liaoning ChinaCollege of Safety Science and Engineering Liaoning Technical University Fuxin Liaoning ChinaAbstract Any disturbance in the ventilation system of a mine during a coal and gas outburst can lead to secondary disasters. This is because, on the one hand, the expansion power of the outburst source makes the airflow in the ventilation system countercurrent, causing the gas in this system to exceed the allowable limit. On the other hand, the airflow density changes because of the outburst and the consequent airflow mixing in the mine roadway, thereby changing the natural wind pressure. From this, the concept of natural gas wind pressure is proposed, and a calculation method for this pressure in a 3D model mine ventilation system is derived. For the “11.10” major coal and gas outburst that occurred in Shizhuang Coal Mine in Qujing, Yunnan Province, the entire process of the counter flow and gas dispersion flow in the main and auxiliary shafts is analyzed using the TF1M 3D simulation program, including the dynamic change in the natural wind pressure in the mine in each stage. The simulation shows that during the gas outburst period, the natural gas pressure of the countercurrent circuit is greater than that of the main fan. Between 140 s and 225 s following the outburst, the natural wind pressure once overcomes the fan pressure and reverses the airflow in the 1824 transport roadway, and the gas is withdrawn from the 1727 service point. Evidently, the natural pressure of the gas produced by the outburst affects the mine ventilation system. In the event of a coal and gas outburst in a private village coal mine, if the natural gas wind pressure can be reasonably utilized and the main fan stopped or the entire mine reversed in time, casualties may be minimized. Scholars studying coal and gas outburst mines should pay attention to mine airflow disorder due to the varying natural gas wind pressure when an outburst occurs and perform simulation drills of the outburst beforehand. Thus, a scientific emergency management plan for mine disaster prevention and reduction can be formulated.https://doi.org/10.1002/ese3.8723D ventilation network with sourcesairflow disordercoal and gas outburstgas natural ventilation pressure
collection DOAJ
language English
format Article
sources DOAJ
author Zongxiang Li
Jingxiao Yu
Yu Liu
MingQian Zhang
Feng Geng
HongJie Zhang
ChunTong Miao
spellingShingle Zongxiang Li
Jingxiao Yu
Yu Liu
MingQian Zhang
Feng Geng
HongJie Zhang
ChunTong Miao
Numerical analysis of natural gas pressure during coal and gas outbursts
Energy Science & Engineering
3D ventilation network with sources
airflow disorder
coal and gas outburst
gas natural ventilation pressure
author_facet Zongxiang Li
Jingxiao Yu
Yu Liu
MingQian Zhang
Feng Geng
HongJie Zhang
ChunTong Miao
author_sort Zongxiang Li
title Numerical analysis of natural gas pressure during coal and gas outbursts
title_short Numerical analysis of natural gas pressure during coal and gas outbursts
title_full Numerical analysis of natural gas pressure during coal and gas outbursts
title_fullStr Numerical analysis of natural gas pressure during coal and gas outbursts
title_full_unstemmed Numerical analysis of natural gas pressure during coal and gas outbursts
title_sort numerical analysis of natural gas pressure during coal and gas outbursts
publisher Wiley
series Energy Science & Engineering
issn 2050-0505
publishDate 2021-08-01
description Abstract Any disturbance in the ventilation system of a mine during a coal and gas outburst can lead to secondary disasters. This is because, on the one hand, the expansion power of the outburst source makes the airflow in the ventilation system countercurrent, causing the gas in this system to exceed the allowable limit. On the other hand, the airflow density changes because of the outburst and the consequent airflow mixing in the mine roadway, thereby changing the natural wind pressure. From this, the concept of natural gas wind pressure is proposed, and a calculation method for this pressure in a 3D model mine ventilation system is derived. For the “11.10” major coal and gas outburst that occurred in Shizhuang Coal Mine in Qujing, Yunnan Province, the entire process of the counter flow and gas dispersion flow in the main and auxiliary shafts is analyzed using the TF1M 3D simulation program, including the dynamic change in the natural wind pressure in the mine in each stage. The simulation shows that during the gas outburst period, the natural gas pressure of the countercurrent circuit is greater than that of the main fan. Between 140 s and 225 s following the outburst, the natural wind pressure once overcomes the fan pressure and reverses the airflow in the 1824 transport roadway, and the gas is withdrawn from the 1727 service point. Evidently, the natural pressure of the gas produced by the outburst affects the mine ventilation system. In the event of a coal and gas outburst in a private village coal mine, if the natural gas wind pressure can be reasonably utilized and the main fan stopped or the entire mine reversed in time, casualties may be minimized. Scholars studying coal and gas outburst mines should pay attention to mine airflow disorder due to the varying natural gas wind pressure when an outburst occurs and perform simulation drills of the outburst beforehand. Thus, a scientific emergency management plan for mine disaster prevention and reduction can be formulated.
topic 3D ventilation network with sources
airflow disorder
coal and gas outburst
gas natural ventilation pressure
url https://doi.org/10.1002/ese3.872
work_keys_str_mv AT zongxiangli numericalanalysisofnaturalgaspressureduringcoalandgasoutbursts
AT jingxiaoyu numericalanalysisofnaturalgaspressureduringcoalandgasoutbursts
AT yuliu numericalanalysisofnaturalgaspressureduringcoalandgasoutbursts
AT mingqianzhang numericalanalysisofnaturalgaspressureduringcoalandgasoutbursts
AT fenggeng numericalanalysisofnaturalgaspressureduringcoalandgasoutbursts
AT hongjiezhang numericalanalysisofnaturalgaspressureduringcoalandgasoutbursts
AT chuntongmiao numericalanalysisofnaturalgaspressureduringcoalandgasoutbursts
_version_ 1721223108366434304