On <em>l<sub>p</sub></em>-Complex Numbers

Dispensing with the common property of distributivity and replacing classical trigonometric functions with their <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math>...

Full description

Bibliographic Details
Main Author: Wolf-Dieter Richter
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/6/877
Description
Summary:Dispensing with the common property of distributivity and replacing classical trigonometric functions with their <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-counterparts in Euler’s trigonometric representation of complex numbers, classes of <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex numbers are introduced and some of their basic properties are proved. The collection of all points that leave the <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-absolute value of each <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex number invariant under <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex numbers multiplication is shown to be a group of elements that have <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-absolute value one but not the symmetry group.
ISSN:2073-8994