On <em>l<sub>p</sub></em>-Complex Numbers

Dispensing with the common property of distributivity and replacing classical trigonometric functions with their <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math>...

Full description

Bibliographic Details
Main Author: Wolf-Dieter Richter
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/6/877
id doaj-56807af16628417a96d1c81150bf4d92
record_format Article
spelling doaj-56807af16628417a96d1c81150bf4d922020-11-25T03:14:48ZengMDPI AGSymmetry2073-89942020-05-011287787710.3390/sym12060877On <em>l<sub>p</sub></em>-Complex NumbersWolf-Dieter Richter0Institute of Mathematics, University of Rostock, Ulmenstraße 69, Haus 3, 18057 Rostock, GermanyDispensing with the common property of distributivity and replacing classical trigonometric functions with their <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-counterparts in Euler’s trigonometric representation of complex numbers, classes of <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex numbers are introduced and some of their basic properties are proved. The collection of all points that leave the <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-absolute value of each <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex number invariant under <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex numbers multiplication is shown to be a group of elements that have <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-absolute value one but not the symmetry group.https://www.mdpi.com/2073-8994/12/6/877geometric vector product<em>l<sub>p</sub></em>-imaginary unit<em>l<sub>p</sub></em>-complex number multiplicationgeometric exponential functioninvariant transformationgeneralized Euler’s trigonometric representation
collection DOAJ
language English
format Article
sources DOAJ
author Wolf-Dieter Richter
spellingShingle Wolf-Dieter Richter
On <em>l<sub>p</sub></em>-Complex Numbers
Symmetry
geometric vector product
<em>l<sub>p</sub></em>-imaginary unit
<em>l<sub>p</sub></em>-complex number multiplication
geometric exponential function
invariant transformation
generalized Euler’s trigonometric representation
author_facet Wolf-Dieter Richter
author_sort Wolf-Dieter Richter
title On <em>l<sub>p</sub></em>-Complex Numbers
title_short On <em>l<sub>p</sub></em>-Complex Numbers
title_full On <em>l<sub>p</sub></em>-Complex Numbers
title_fullStr On <em>l<sub>p</sub></em>-Complex Numbers
title_full_unstemmed On <em>l<sub>p</sub></em>-Complex Numbers
title_sort on <em>l<sub>p</sub></em>-complex numbers
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2020-05-01
description Dispensing with the common property of distributivity and replacing classical trigonometric functions with their <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-counterparts in Euler’s trigonometric representation of complex numbers, classes of <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex numbers are introduced and some of their basic properties are proved. The collection of all points that leave the <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-absolute value of each <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex number invariant under <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex numbers multiplication is shown to be a group of elements that have <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-absolute value one but not the symmetry group.
topic geometric vector product
<em>l<sub>p</sub></em>-imaginary unit
<em>l<sub>p</sub></em>-complex number multiplication
geometric exponential function
invariant transformation
generalized Euler’s trigonometric representation
url https://www.mdpi.com/2073-8994/12/6/877
work_keys_str_mv AT wolfdieterrichter onemlsubpsubemcomplexnumbers
_version_ 1724642270581358592