On <em>l<sub>p</sub></em>-Complex Numbers
Dispensing with the common property of distributivity and replacing classical trigonometric functions with their <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math>...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/6/877 |
id |
doaj-56807af16628417a96d1c81150bf4d92 |
---|---|
record_format |
Article |
spelling |
doaj-56807af16628417a96d1c81150bf4d922020-11-25T03:14:48ZengMDPI AGSymmetry2073-89942020-05-011287787710.3390/sym12060877On <em>l<sub>p</sub></em>-Complex NumbersWolf-Dieter Richter0Institute of Mathematics, University of Rostock, Ulmenstraße 69, Haus 3, 18057 Rostock, GermanyDispensing with the common property of distributivity and replacing classical trigonometric functions with their <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-counterparts in Euler’s trigonometric representation of complex numbers, classes of <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex numbers are introduced and some of their basic properties are proved. The collection of all points that leave the <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-absolute value of each <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex number invariant under <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex numbers multiplication is shown to be a group of elements that have <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-absolute value one but not the symmetry group.https://www.mdpi.com/2073-8994/12/6/877geometric vector product<em>l<sub>p</sub></em>-imaginary unit<em>l<sub>p</sub></em>-complex number multiplicationgeometric exponential functioninvariant transformationgeneralized Euler’s trigonometric representation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wolf-Dieter Richter |
spellingShingle |
Wolf-Dieter Richter On <em>l<sub>p</sub></em>-Complex Numbers Symmetry geometric vector product <em>l<sub>p</sub></em>-imaginary unit <em>l<sub>p</sub></em>-complex number multiplication geometric exponential function invariant transformation generalized Euler’s trigonometric representation |
author_facet |
Wolf-Dieter Richter |
author_sort |
Wolf-Dieter Richter |
title |
On <em>l<sub>p</sub></em>-Complex Numbers |
title_short |
On <em>l<sub>p</sub></em>-Complex Numbers |
title_full |
On <em>l<sub>p</sub></em>-Complex Numbers |
title_fullStr |
On <em>l<sub>p</sub></em>-Complex Numbers |
title_full_unstemmed |
On <em>l<sub>p</sub></em>-Complex Numbers |
title_sort |
on <em>l<sub>p</sub></em>-complex numbers |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2020-05-01 |
description |
Dispensing with the common property of distributivity and replacing classical trigonometric functions with their <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-counterparts in Euler’s trigonometric representation of complex numbers, classes of <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex numbers are introduced and some of their basic properties are proved. The collection of all points that leave the <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-absolute value of each <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex number invariant under <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-complex numbers multiplication is shown to be a group of elements that have <inline-formula> <math display="inline"> <semantics> <msub> <mi>l</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>-absolute value one but not the symmetry group. |
topic |
geometric vector product <em>l<sub>p</sub></em>-imaginary unit <em>l<sub>p</sub></em>-complex number multiplication geometric exponential function invariant transformation generalized Euler’s trigonometric representation |
url |
https://www.mdpi.com/2073-8994/12/6/877 |
work_keys_str_mv |
AT wolfdieterrichter onemlsubpsubemcomplexnumbers |
_version_ |
1724642270581358592 |