Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization

The space <inline-formula> <math display="inline"> <semantics> <mo>&#928;</mo> </semantics> </math> </inline-formula> of centered <i>m</i>-planes is considered in projective space <inline-formula> <math display="...

Full description

Bibliographic Details
Main Author: Olga Belova
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/10/901
id doaj-56adf3c717cb45c1ab3b80c881255b70
record_format Article
spelling doaj-56adf3c717cb45c1ab3b80c881255b702020-11-25T00:39:07ZengMDPI AGMathematics2227-73902019-09-0171090110.3390/math7100901math7100901Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at NormalizationOlga Belova0Institute of Physical and Mathematical Sciences and IT, Immanuel Kant Baltic Federal University, A. Nevsky str. 14, 236016 Kaliningrad, RussiaThe space <inline-formula> <math display="inline"> <semantics> <mo>&#928;</mo> </semantics> </math> </inline-formula> of centered <i>m</i>-planes is considered in projective space <inline-formula> <math display="inline"> <semantics> <msub> <mi>P</mi> <mi>n</mi> </msub> </semantics> </math> </inline-formula>. A principal bundle is associated with the space <inline-formula> <math display="inline"> <semantics> <mo>&#928;</mo> </semantics> </math> </inline-formula> and a group connection is given on the principal bundle. The connection is not uniquely induced at the normalization of the space <inline-formula> <math display="inline"> <semantics> <mo>&#928;</mo> </semantics> </math> </inline-formula>. Semi-normalized spaces <inline-formula> <math display="inline"> <semantics> <msup> <mo>&#928;</mo> <mn>1</mn> </msup> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <msup> <mo>&#928;</mo> <mn>2</mn> </msup> </semantics> </math> </inline-formula> and normalized space <inline-formula> <math display="inline"> <semantics> <msup> <mo>&#928;</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> </inline-formula> are investigated. By virtue of the Cartan&#8722;Laptev method, the dynamics of changes of corresponding bundles, group connection objects, curvature and torsion of the connections are discovered at a transition from the space <inline-formula> <math display="inline"> <semantics> <mo>&#928;</mo> </semantics> </math> </inline-formula> to the normalized space <inline-formula> <math display="inline"> <semantics> <msup> <mo>&#928;</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> </inline-formula>.https://www.mdpi.com/2227-7390/7/10/901differentiable manifoldcartan–laptev methodspace of centered planesnormalizationreductionconnection
collection DOAJ
language English
format Article
sources DOAJ
author Olga Belova
spellingShingle Olga Belova
Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
Mathematics
differentiable manifold
cartan–laptev method
space of centered planes
normalization
reduction
connection
author_facet Olga Belova
author_sort Olga Belova
title Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_short Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_full Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_fullStr Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_full_unstemmed Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_sort reduction of bundles, connection, curvature, and torsion of the centered planes space at normalization
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2019-09-01
description The space <inline-formula> <math display="inline"> <semantics> <mo>&#928;</mo> </semantics> </math> </inline-formula> of centered <i>m</i>-planes is considered in projective space <inline-formula> <math display="inline"> <semantics> <msub> <mi>P</mi> <mi>n</mi> </msub> </semantics> </math> </inline-formula>. A principal bundle is associated with the space <inline-formula> <math display="inline"> <semantics> <mo>&#928;</mo> </semantics> </math> </inline-formula> and a group connection is given on the principal bundle. The connection is not uniquely induced at the normalization of the space <inline-formula> <math display="inline"> <semantics> <mo>&#928;</mo> </semantics> </math> </inline-formula>. Semi-normalized spaces <inline-formula> <math display="inline"> <semantics> <msup> <mo>&#928;</mo> <mn>1</mn> </msup> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <msup> <mo>&#928;</mo> <mn>2</mn> </msup> </semantics> </math> </inline-formula> and normalized space <inline-formula> <math display="inline"> <semantics> <msup> <mo>&#928;</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> </inline-formula> are investigated. By virtue of the Cartan&#8722;Laptev method, the dynamics of changes of corresponding bundles, group connection objects, curvature and torsion of the connections are discovered at a transition from the space <inline-formula> <math display="inline"> <semantics> <mo>&#928;</mo> </semantics> </math> </inline-formula> to the normalized space <inline-formula> <math display="inline"> <semantics> <msup> <mo>&#928;</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> </inline-formula>.
topic differentiable manifold
cartan–laptev method
space of centered planes
normalization
reduction
connection
url https://www.mdpi.com/2227-7390/7/10/901
work_keys_str_mv AT olgabelova reductionofbundlesconnectioncurvatureandtorsionofthecenteredplanesspaceatnormalization
_version_ 1725295005947396096