A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy

Abstract Background For breast cancer patients undergoing neoadjuvant chemotherapy (NAC), pathologic complete response (pCR; no invasive or in situ) cannot be assessed non-invasively so all patients undergo surgery. The aim of our study was to develop and validate a radiomics classifier that classif...

Full description

Bibliographic Details
Main Authors: Elizabeth J. Sutton, Natsuko Onishi, Duc A. Fehr, Brittany Z. Dashevsky, Meredith Sadinski, Katja Pinker, Danny F. Martinez, Edi Brogi, Lior Braunstein, Pedram Razavi, Mahmoud El-Tamer, Virgilio Sacchini, Joseph O. Deasy, Elizabeth A. Morris, Harini Veeraraghavan
Format: Article
Language:English
Published: BMC 2020-05-01
Series:Breast Cancer Research
Subjects:
MRI
Online Access:http://link.springer.com/article/10.1186/s13058-020-01291-w
id doaj-570dbe650d5946b4ba3a963afa01ccd1
record_format Article
spelling doaj-570dbe650d5946b4ba3a963afa01ccd12021-04-02T12:33:46ZengBMCBreast Cancer Research1465-542X2020-05-0122111110.1186/s13058-020-01291-wA machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapyElizabeth J. Sutton0Natsuko Onishi1Duc A. Fehr2Brittany Z. Dashevsky3Meredith Sadinski4Katja Pinker5Danny F. Martinez6Edi Brogi7Lior Braunstein8Pedram Razavi9Mahmoud El-Tamer10Virgilio Sacchini11Joseph O. Deasy12Elizabeth A. Morris13Harini Veeraraghavan14Department of Radiology, Memorial Sloan Kettering Cancer CenterDepartment of Radiology, Memorial Sloan Kettering Cancer CenterDepartment of Medical Physics, Memorial Sloan Kettering Cancer CenterDepartment of Radiology, Memorial Sloan Kettering Cancer CenterDepartment of Radiology, Memorial Sloan Kettering Cancer CenterDepartment of Radiology, Memorial Sloan Kettering Cancer CenterDepartment of Radiology, Memorial Sloan Kettering Cancer CenterDepartment of Pathology, Memorial Sloan Kettering Cancer CenterDepartment of Radiation Oncology, Memorial Sloan Kettering Cancer CenterDepartment of Medicine, Memorial Sloan Kettering Cancer CenterDepartment of Surgery, Memorial Sloan Kettering Cancer CenterDepartment of Surgery, Memorial Sloan Kettering Cancer CenterDepartment of Medical Physics, Memorial Sloan Kettering Cancer CenterDepartment of Radiology, Memorial Sloan Kettering Cancer CenterDepartment of Medical Physics, Memorial Sloan Kettering Cancer CenterAbstract Background For breast cancer patients undergoing neoadjuvant chemotherapy (NAC), pathologic complete response (pCR; no invasive or in situ) cannot be assessed non-invasively so all patients undergo surgery. The aim of our study was to develop and validate a radiomics classifier that classifies breast cancer pCR post-NAC on MRI prior to surgery. Methods This retrospective study included women treated with NAC for breast cancer from 2014 to 2016 with (1) pre- and post-NAC breast MRI and (2) post-NAC surgical pathology report assessing response. Automated radiomics analysis of pre- and post-NAC breast MRI involved image segmentation, radiomics feature extraction, feature pre-filtering, and classifier building through recursive feature elimination random forest (RFE-RF) machine learning. The RFE-RF classifier was trained with nested five-fold cross-validation using (a) radiomics only (model 1) and (b) radiomics and molecular subtype (model 2). Class imbalance was addressed using the synthetic minority oversampling technique. Results Two hundred seventy-three women with 278 invasive breast cancers were included; the training set consisted of 222 cancers (61 pCR, 161 no-pCR; mean age 51.8 years, SD 11.8), and the independent test set consisted of 56 cancers (13 pCR, 43 no-pCR; mean age 51.3 years, SD 11.8). There was no significant difference in pCR or molecular subtype between the training and test sets. Model 1 achieved a cross-validation AUROC of 0.72 (95% CI 0.64, 0.79) and a similarly accurate (P = 0.1) AUROC of 0.83 (95% CI 0.71, 0.94) in both the training and test sets. Model 2 achieved a cross-validation AUROC of 0.80 (95% CI 0.72, 0.87) and a similar (P = 0.9) AUROC of 0.78 (95% CI 0.62, 0.94) in both the training and test sets. Conclusions This study validated a radiomics classifier combining radiomics with molecular subtypes that accurately classifies pCR on MRI post-NAC.http://link.springer.com/article/10.1186/s13058-020-01291-wBreast cancerNeoadjuvant chemotherapyMRIRadiomicsMachine learning
collection DOAJ
language English
format Article
sources DOAJ
author Elizabeth J. Sutton
Natsuko Onishi
Duc A. Fehr
Brittany Z. Dashevsky
Meredith Sadinski
Katja Pinker
Danny F. Martinez
Edi Brogi
Lior Braunstein
Pedram Razavi
Mahmoud El-Tamer
Virgilio Sacchini
Joseph O. Deasy
Elizabeth A. Morris
Harini Veeraraghavan
spellingShingle Elizabeth J. Sutton
Natsuko Onishi
Duc A. Fehr
Brittany Z. Dashevsky
Meredith Sadinski
Katja Pinker
Danny F. Martinez
Edi Brogi
Lior Braunstein
Pedram Razavi
Mahmoud El-Tamer
Virgilio Sacchini
Joseph O. Deasy
Elizabeth A. Morris
Harini Veeraraghavan
A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy
Breast Cancer Research
Breast cancer
Neoadjuvant chemotherapy
MRI
Radiomics
Machine learning
author_facet Elizabeth J. Sutton
Natsuko Onishi
Duc A. Fehr
Brittany Z. Dashevsky
Meredith Sadinski
Katja Pinker
Danny F. Martinez
Edi Brogi
Lior Braunstein
Pedram Razavi
Mahmoud El-Tamer
Virgilio Sacchini
Joseph O. Deasy
Elizabeth A. Morris
Harini Veeraraghavan
author_sort Elizabeth J. Sutton
title A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy
title_short A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy
title_full A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy
title_fullStr A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy
title_full_unstemmed A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy
title_sort machine learning model that classifies breast cancer pathologic complete response on mri post-neoadjuvant chemotherapy
publisher BMC
series Breast Cancer Research
issn 1465-542X
publishDate 2020-05-01
description Abstract Background For breast cancer patients undergoing neoadjuvant chemotherapy (NAC), pathologic complete response (pCR; no invasive or in situ) cannot be assessed non-invasively so all patients undergo surgery. The aim of our study was to develop and validate a radiomics classifier that classifies breast cancer pCR post-NAC on MRI prior to surgery. Methods This retrospective study included women treated with NAC for breast cancer from 2014 to 2016 with (1) pre- and post-NAC breast MRI and (2) post-NAC surgical pathology report assessing response. Automated radiomics analysis of pre- and post-NAC breast MRI involved image segmentation, radiomics feature extraction, feature pre-filtering, and classifier building through recursive feature elimination random forest (RFE-RF) machine learning. The RFE-RF classifier was trained with nested five-fold cross-validation using (a) radiomics only (model 1) and (b) radiomics and molecular subtype (model 2). Class imbalance was addressed using the synthetic minority oversampling technique. Results Two hundred seventy-three women with 278 invasive breast cancers were included; the training set consisted of 222 cancers (61 pCR, 161 no-pCR; mean age 51.8 years, SD 11.8), and the independent test set consisted of 56 cancers (13 pCR, 43 no-pCR; mean age 51.3 years, SD 11.8). There was no significant difference in pCR or molecular subtype between the training and test sets. Model 1 achieved a cross-validation AUROC of 0.72 (95% CI 0.64, 0.79) and a similarly accurate (P = 0.1) AUROC of 0.83 (95% CI 0.71, 0.94) in both the training and test sets. Model 2 achieved a cross-validation AUROC of 0.80 (95% CI 0.72, 0.87) and a similar (P = 0.9) AUROC of 0.78 (95% CI 0.62, 0.94) in both the training and test sets. Conclusions This study validated a radiomics classifier combining radiomics with molecular subtypes that accurately classifies pCR on MRI post-NAC.
topic Breast cancer
Neoadjuvant chemotherapy
MRI
Radiomics
Machine learning
url http://link.springer.com/article/10.1186/s13058-020-01291-w
work_keys_str_mv AT elizabethjsutton amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT natsukoonishi amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT ducafehr amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT brittanyzdashevsky amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT meredithsadinski amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT katjapinker amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT dannyfmartinez amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT edibrogi amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT liorbraunstein amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT pedramrazavi amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT mahmoudeltamer amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT virgiliosacchini amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT josephodeasy amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT elizabethamorris amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT hariniveeraraghavan amachinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT elizabethjsutton machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT natsukoonishi machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT ducafehr machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT brittanyzdashevsky machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT meredithsadinski machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT katjapinker machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT dannyfmartinez machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT edibrogi machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT liorbraunstein machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT pedramrazavi machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT mahmoudeltamer machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT virgiliosacchini machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT josephodeasy machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT elizabethamorris machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
AT hariniveeraraghavan machinelearningmodelthatclassifiesbreastcancerpathologiccompleteresponseonmripostneoadjuvantchemotherapy
_version_ 1721568459802804224