Research on Sturm–Liouville boundary value problems of fractional p-Laplacian equation

Abstract In this work we investigate the following fractional p-Laplacian differential equation with Sturm–Liouville boundary value conditions: { D T α t ( 1 ( h ( t ) ) p − 2 ϕ p ( h ( t ) 0 C D t α u ( t ) ) ) + a ( t ) ϕ p ( u ( t ) ) = λ f ( t , u ( t ) ) , a.e.  t ∈ [ 0 , T ] , α 1 ϕ p ( u ( 0...

Full description

Bibliographic Details
Main Authors: Tingting Xue, Fanliang Kong, Long Zhang
Format: Article
Language:English
Published: SpringerOpen 2021-03-01
Series:Advances in Difference Equations
Subjects:
Online Access:https://doi.org/10.1186/s13662-021-03339-3
id doaj-5780680f4f624efeb88d2dbe5c9a860c
record_format Article
spelling doaj-5780680f4f624efeb88d2dbe5c9a860c2021-03-21T12:45:36ZengSpringerOpenAdvances in Difference Equations1687-18472021-03-012021112010.1186/s13662-021-03339-3Research on Sturm–Liouville boundary value problems of fractional p-Laplacian equationTingting Xue0Fanliang Kong1Long Zhang2School of Mathematics and Physics, Xinjiang Institute of EngineeringSchool of Mathematics and Physics, Xinjiang Institute of EngineeringSchool of Mathematics and Physics, Xinjiang Institute of EngineeringAbstract In this work we investigate the following fractional p-Laplacian differential equation with Sturm–Liouville boundary value conditions: { D T α t ( 1 ( h ( t ) ) p − 2 ϕ p ( h ( t ) 0 C D t α u ( t ) ) ) + a ( t ) ϕ p ( u ( t ) ) = λ f ( t , u ( t ) ) , a.e.  t ∈ [ 0 , T ] , α 1 ϕ p ( u ( 0 ) ) − α 2 t D T α − 1 ( ϕ p ( 0 C D t α u ( 0 ) ) ) = 0 , β 1 ϕ p ( u ( T ) ) + β 2 t D T α − 1 ( ϕ p ( 0 C D t α u ( T ) ) ) = 0 , $$ \textstyle\begin{cases} {}_{t}D_{T}^{\alpha } ( { \frac{1}{{{{ ( {h ( t )} )}^{p - 2}}}}{\phi _{p}} ( {h ( t ){}_{0}^{C}D_{t}^{\alpha }u ( t )} )} ) + a ( t ){\phi _{p}} ( {u ( t )} ) = \lambda f (t,u(t) ),\quad \mbox{a.e. }t \in [ {0,T} ], \\ {\alpha _{1}} {\phi _{p}} ( {u ( 0 )} ) - { \alpha _{2}} {}_{t}D_{T}^{\alpha - 1} ( {{\phi _{p}} ( {{}_{0}^{C}D_{t}^{\alpha }u ( 0 )} )} ) = 0, \\ {\beta _{1}} { \phi _{p}} ( {u ( T )} ) + {\beta _{2}} {}_{t}D_{T}^{ \alpha - 1} ( {{\phi _{p}} ( {{}_{0}^{C}D_{t}^{\alpha }u ( T )} )} ) = 0, \end{cases} $$ where D t α 0 C ${}_{0}^{C}D_{t}^{\alpha }$ , D T α t ${}_{t}D_{T}^{\alpha }$ are the left Caputo and right Riemann–Liouville fractional derivatives of order α ∈ ( 1 2 , 1 ] $\alpha \in ( {\frac{1}{2},1} ]$ , respectively. By using variational methods and critical point theory, some new results on the multiplicity of solutions are obtained.https://doi.org/10.1186/s13662-021-03339-3Fractional p-Laplacian equationSturm–Liouville boundary value conditionsMultiplicity of solutionsVariational methodsCritical point theory
collection DOAJ
language English
format Article
sources DOAJ
author Tingting Xue
Fanliang Kong
Long Zhang
spellingShingle Tingting Xue
Fanliang Kong
Long Zhang
Research on Sturm–Liouville boundary value problems of fractional p-Laplacian equation
Advances in Difference Equations
Fractional p-Laplacian equation
Sturm–Liouville boundary value conditions
Multiplicity of solutions
Variational methods
Critical point theory
author_facet Tingting Xue
Fanliang Kong
Long Zhang
author_sort Tingting Xue
title Research on Sturm–Liouville boundary value problems of fractional p-Laplacian equation
title_short Research on Sturm–Liouville boundary value problems of fractional p-Laplacian equation
title_full Research on Sturm–Liouville boundary value problems of fractional p-Laplacian equation
title_fullStr Research on Sturm–Liouville boundary value problems of fractional p-Laplacian equation
title_full_unstemmed Research on Sturm–Liouville boundary value problems of fractional p-Laplacian equation
title_sort research on sturm–liouville boundary value problems of fractional p-laplacian equation
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1847
publishDate 2021-03-01
description Abstract In this work we investigate the following fractional p-Laplacian differential equation with Sturm–Liouville boundary value conditions: { D T α t ( 1 ( h ( t ) ) p − 2 ϕ p ( h ( t ) 0 C D t α u ( t ) ) ) + a ( t ) ϕ p ( u ( t ) ) = λ f ( t , u ( t ) ) , a.e.  t ∈ [ 0 , T ] , α 1 ϕ p ( u ( 0 ) ) − α 2 t D T α − 1 ( ϕ p ( 0 C D t α u ( 0 ) ) ) = 0 , β 1 ϕ p ( u ( T ) ) + β 2 t D T α − 1 ( ϕ p ( 0 C D t α u ( T ) ) ) = 0 , $$ \textstyle\begin{cases} {}_{t}D_{T}^{\alpha } ( { \frac{1}{{{{ ( {h ( t )} )}^{p - 2}}}}{\phi _{p}} ( {h ( t ){}_{0}^{C}D_{t}^{\alpha }u ( t )} )} ) + a ( t ){\phi _{p}} ( {u ( t )} ) = \lambda f (t,u(t) ),\quad \mbox{a.e. }t \in [ {0,T} ], \\ {\alpha _{1}} {\phi _{p}} ( {u ( 0 )} ) - { \alpha _{2}} {}_{t}D_{T}^{\alpha - 1} ( {{\phi _{p}} ( {{}_{0}^{C}D_{t}^{\alpha }u ( 0 )} )} ) = 0, \\ {\beta _{1}} { \phi _{p}} ( {u ( T )} ) + {\beta _{2}} {}_{t}D_{T}^{ \alpha - 1} ( {{\phi _{p}} ( {{}_{0}^{C}D_{t}^{\alpha }u ( T )} )} ) = 0, \end{cases} $$ where D t α 0 C ${}_{0}^{C}D_{t}^{\alpha }$ , D T α t ${}_{t}D_{T}^{\alpha }$ are the left Caputo and right Riemann–Liouville fractional derivatives of order α ∈ ( 1 2 , 1 ] $\alpha \in ( {\frac{1}{2},1} ]$ , respectively. By using variational methods and critical point theory, some new results on the multiplicity of solutions are obtained.
topic Fractional p-Laplacian equation
Sturm–Liouville boundary value conditions
Multiplicity of solutions
Variational methods
Critical point theory
url https://doi.org/10.1186/s13662-021-03339-3
work_keys_str_mv AT tingtingxue researchonsturmliouvilleboundaryvalueproblemsoffractionalplaplacianequation
AT fanliangkong researchonsturmliouvilleboundaryvalueproblemsoffractionalplaplacianequation
AT longzhang researchonsturmliouvilleboundaryvalueproblemsoffractionalplaplacianequation
_version_ 1724210197269839872