NUMERICAL SOLUTION OF THE GODUNOV - SULTANGAZIN SYSTEM OF EQUATIONS. PERIODIC CASE

The Cauchy problem of the Godunov - Sultangazin system of equations with periodic initial conditions is considered in the article. The Godunov - Sultangazin system of equations is a model problem of the kinetic theory of gases. It is a discrete kinetic model of one-dimensional gas consisting of iden...

Full description

Bibliographic Details
Main Author: Vasil’eva Ol’ga Aleksandrovna
Format: Article
Language:English
Published: Moscow State University of Civil Engineering (MGSU) 2016-04-01
Series:Vestnik MGSU
Subjects:
Online Access:http://vestnikmgsu.ru/index.php/archive/article/download/3133
Description
Summary:The Cauchy problem of the Godunov - Sultangazin system of equations with periodic initial conditions is considered in the article. The Godunov - Sultangazin system of equations is a model problem of the kinetic theory of gases. It is a discrete kinetic model of one-dimensional gas consisting of identical monatomic molecules. The molecules can have one of three speeds. So, there are three groups of molecules. The molecules of the first two groups have the speeds equal in values and opposite in directions. The molecules of the third group have zero speed. The considered mathematical model has a number of properties of Boltzmann equation. This system of the equations is a quasi-linear system of partial differential equations. There is no analytic solution for this problem in the general case. So, numerical investigation of the Cauchy problem of the Godunov - Sultangazin system is very important. The finite-difference method of the first order is used for numerical investigation of the Cauchy problem of the Godunov - Sultangazin system of equations. The paper presents and discusses the results of numerical investigation of the Cauchy problem for the studied system solution with periodic initial condition. The dependence of the time of stabilization of the Cauchy problem solution of Godunov - Sultangazin system of equations from the decreasing parameter of system are obtained. The paper presents the dependence of time of energy exchange from the decreasing parameter. The solution stabilization to the equilibrium state is obtained. The stabilization time of Godunov - Sultangazin system solution is compared to the stabilization time of Carleman system solution in periodic case. The results of numerical investigation are in good agreement with the theoretical results obtained previously.
ISSN:1997-0935