Circulating interleukin-18 as a biomarker of total-body radiation exposure in mice, minipigs, and nonhuman primates (NHP).

We aim to develop a rapid, easy-to-use, inexpensive and accurate radiation dose-assessment assay that tests easily obtained samples (e.g., blood) to triage and track radiological casualties, and to evaluate the radioprotective and therapeutic effects of radiation countermeasures. In the present stud...

Full description

Bibliographic Details
Main Authors: Cam T Ha, Xiang-Hong Li, Dadin Fu, Maria Moroni, Carolyn Fisher, Robert Arnott, Venkataraman Srinivasan, Mang Xiao
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4188589?pdf=render
Description
Summary:We aim to develop a rapid, easy-to-use, inexpensive and accurate radiation dose-assessment assay that tests easily obtained samples (e.g., blood) to triage and track radiological casualties, and to evaluate the radioprotective and therapeutic effects of radiation countermeasures. In the present study, we evaluated the interleukin (IL)-1 family of cytokines, IL-1β, IL-18 and IL-33, as well as their secondary cytokines' expression and secretion in CD2F1 mouse bone marrow (BM), spleen, thymus and serum in response to γ-radiation from sublethal to lethal doses (5, 7, 8, 9, 10, or 12 Gy) at different time points using the enzyme-linked immune sorbent assay (ELISA), immunoblotting, and cytokine antibody array. Our data identified increases of IL-1β, IL-18, and/or IL-33 in mouse thymus, spleen and BM cells after total-body irradiation (TBI). However, levels of these cytokines varied in different tissues. Interestingly, IL-18 but not IL-1β or IL-33 increased significantly (2.5-24 fold) and stably in mouse serum from day 1 after TBI up to 13 days in a radiation dose-dependent manner. We further confirmed our finding in total-body γ-irradiated nonhuman primates (NHPs) and minipigs, and demonstrated that radiation significantly enhanced IL-18 in serum from NHPs 2-4 days post-irradiation and in minipig plasma 1-3 days post-irradiation. Finally, we compared circulating IL-18 with the well known hematological radiation biomarkers lymphocyte and neutrophil counts in blood of mouse, minipigs and NHPs and demonstrated close correlations between these biomarkers in response to radiation. Our results suggest that the elevated levels of circulating IL-18 after radiation proportionally reflect radiation dose and severity of radiation injury and may be used both as a potential biomarker for triage and also to track casualties after radiological accidents as well as for therapeutic radiation exposure.
ISSN:1932-6203