Metal‐Free B, N co‐Doped Hierarchical Porous Carbon Electrocatalyst with an Excellent O2 Reduction Performance

Abstract Fuel cells have attracted increasing attention due to their low cost, high energy density, low environmental pollution, and abundant raw materials. Oxygen reduction reaction (ORR) is a core technology of fuel cells, and the development of new electrocatalysts with high ORR performance is hi...

Full description

Bibliographic Details
Main Authors: Fangxiao Wang, Jianhai Ren, Zihao Zheng, Qiye Liu, Dr. Chun‐yang Zhang
Format: Article
Language:English
Published: Wiley-VCH 2021-07-01
Series:ChemistryOpen
Subjects:
Online Access:https://doi.org/10.1002/open.202100090
Description
Summary:Abstract Fuel cells have attracted increasing attention due to their low cost, high energy density, low environmental pollution, and abundant raw materials. Oxygen reduction reaction (ORR) is a core technology of fuel cells, and the development of new electrocatalysts with high ORR performance is highly desirable. Herein, we synthesize a series of B, N co‐doped hierarchical porous carbons using a soft template method with the integration of self‐assembly, calcination and etching. The obtained materials exhibit hierarchical porous structures, controllable pore distribution, partial graphite structures, and B, N co‐doping. They can function as the cost‐effective and metal‐free electrocatalysts, facilitating the diffusion of electrolyte ions and the improvement of ORR performance. Especially, the B, N co‐doped porous carbon with the B‐to‐N molar ratio of 5 (BNC‐5) displays a high ORR activity with a half‐wave potential (E1/2) of 0.73 V, an onset potential (Eonset) of 0.94 V, and a high limiting current density (JL) of 5.98 mA cm−2, superior to the N‐doped C (NC) and BNC‐1 (the B‐to‐N molar ratio=1), BNC‐3 (the B‐to‐N molar ratio=3) and BNC‐7 (the B‐to‐N molar ratio=7) under the identical conditions. Moreover, the BNC‐5 exhibits good cycling stability after 5000 cyclic voltammetry (CV) cycles and excellent tolerance toward even 3 M methanol. This research provides a new approach for the facile synthesis of dual element‐doped carbon electrocatalysts with high ORR performance.
ISSN:2191-1363