Super local edge anti-magic total coloring of paths and its derivation
<p>Suppose <em>G</em>(<em>V,E</em>) be a connected simple graph and suppose <em>u,v,x</em> be vertices of graph <em>G</em>. A bijection <em>f</em> : <em>V</em> ∪ <em>E</em> → {1,2,3,...,|<em>V</em>...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
InaCombS; Universitas Jember; dan Universitas Indonesia
2020-01-01
|
Series: | Indonesian Journal of Combinatorics |
Subjects: | |
Online Access: | http://www.ijc.or.id/index.php/ijc/article/view/118 |
id |
doaj-5804db37b24a44d99ac3af05b33008d5 |
---|---|
record_format |
Article |
spelling |
doaj-5804db37b24a44d99ac3af05b33008d52020-11-25T04:10:41ZengInaCombS; Universitas Jember; dan Universitas IndonesiaIndonesian Journal of Combinatorics2541-22052020-01-013212613910.19184/ijc.2019.3.2.635Super local edge anti-magic total coloring of paths and its derivationFawwaz Fakhrurrozi Hadiputra0Denny Riama Silaban1Tita Khalis MaryatiUniversitas IndonesiaUniversitas Indonesia<p>Suppose <em>G</em>(<em>V,E</em>) be a connected simple graph and suppose <em>u,v,x</em> be vertices of graph <em>G</em>. A bijection <em>f</em> : <em>V</em> ∪ <em>E</em> → {1,2,3,...,|<em>V</em> (<em>G</em>)| + |<em>E</em>(<em>G</em>)|} is called super local edge antimagic total labeling if for any adjacent edges <em>uv</em> and <em>vx</em>, <em>w</em>(<em>uv</em>) 6= <em>w</em>(<em>vx</em>), which <em>w</em>(<em>uv</em>) = <em>f</em>(<em>u</em>)+<em>f</em>(<em>uv</em>)+<em>f</em>(<em>v</em>) for every vertex <em>u,v,x</em> in <em>G</em>, and <em>f</em>(<em>u</em>) < <em>f</em>(<em>e</em>) for every vertex <em>u</em> and edge <em>e</em> ∈ <em>E</em>(<em>G</em>). Let γ(<em>G</em>) is the chromatic number of edge coloring of a graph <em>G</em>. By giving <em>G</em> a labeling of <em>f</em>, we denotes the minimum weight of edges needed in <em>G</em> as γ<em>leat</em>(<em>G</em>). If every labels for vertices is smaller than its edges, then it is be considered γ<em>sleat</em>(<em>G</em>). In this study, we proved the γ sleat of paths and its derivation.</p>http://www.ijc.or.id/index.php/ijc/article/view/118edge chromatic numberpath graphssuper local edge antimagictotal coloring |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fawwaz Fakhrurrozi Hadiputra Denny Riama Silaban Tita Khalis Maryati |
spellingShingle |
Fawwaz Fakhrurrozi Hadiputra Denny Riama Silaban Tita Khalis Maryati Super local edge anti-magic total coloring of paths and its derivation Indonesian Journal of Combinatorics edge chromatic number path graphs super local edge antimagic total coloring |
author_facet |
Fawwaz Fakhrurrozi Hadiputra Denny Riama Silaban Tita Khalis Maryati |
author_sort |
Fawwaz Fakhrurrozi Hadiputra |
title |
Super local edge anti-magic total coloring of paths and its derivation |
title_short |
Super local edge anti-magic total coloring of paths and its derivation |
title_full |
Super local edge anti-magic total coloring of paths and its derivation |
title_fullStr |
Super local edge anti-magic total coloring of paths and its derivation |
title_full_unstemmed |
Super local edge anti-magic total coloring of paths and its derivation |
title_sort |
super local edge anti-magic total coloring of paths and its derivation |
publisher |
InaCombS; Universitas Jember; dan Universitas Indonesia |
series |
Indonesian Journal of Combinatorics |
issn |
2541-2205 |
publishDate |
2020-01-01 |
description |
<p>Suppose <em>G</em>(<em>V,E</em>) be a connected simple graph and suppose <em>u,v,x</em> be vertices of graph <em>G</em>. A bijection <em>f</em> : <em>V</em> ∪ <em>E</em> → {1,2,3,...,|<em>V</em> (<em>G</em>)| + |<em>E</em>(<em>G</em>)|} is called super local edge antimagic total labeling if for any adjacent edges <em>uv</em> and <em>vx</em>, <em>w</em>(<em>uv</em>) 6= <em>w</em>(<em>vx</em>), which <em>w</em>(<em>uv</em>) = <em>f</em>(<em>u</em>)+<em>f</em>(<em>uv</em>)+<em>f</em>(<em>v</em>) for every vertex <em>u,v,x</em> in <em>G</em>, and <em>f</em>(<em>u</em>) < <em>f</em>(<em>e</em>) for every vertex <em>u</em> and edge <em>e</em> ∈ <em>E</em>(<em>G</em>). Let γ(<em>G</em>) is the chromatic number of edge coloring of a graph <em>G</em>. By giving <em>G</em> a labeling of <em>f</em>, we denotes the minimum weight of edges needed in <em>G</em> as γ<em>leat</em>(<em>G</em>). If every labels for vertices is smaller than its edges, then it is be considered γ<em>sleat</em>(<em>G</em>). In this study, we proved the γ sleat of paths and its derivation.</p> |
topic |
edge chromatic number path graphs super local edge antimagic total coloring |
url |
http://www.ijc.or.id/index.php/ijc/article/view/118 |
work_keys_str_mv |
AT fawwazfakhrurrozihadiputra superlocaledgeantimagictotalcoloringofpathsanditsderivation AT dennyriamasilaban superlocaledgeantimagictotalcoloringofpathsanditsderivation AT titakhalismaryati superlocaledgeantimagictotalcoloringofpathsanditsderivation |
_version_ |
1724419738395738112 |