Super local edge anti-magic total coloring of paths and its derivation

<p>Suppose <em>G</em>(<em>V,E</em>) be a connected simple graph and suppose <em>u,v,x</em> be vertices of graph <em>G</em>. A bijection <em>f</em> : <em>V</em> ∪ <em>E</em> → {1,2,3,...,|<em>V</em>...

Full description

Bibliographic Details
Main Authors: Fawwaz Fakhrurrozi Hadiputra, Denny Riama Silaban, Tita Khalis Maryati
Format: Article
Language:English
Published: InaCombS; Universitas Jember; dan Universitas Indonesia 2020-01-01
Series:Indonesian Journal of Combinatorics
Subjects:
Online Access:http://www.ijc.or.id/index.php/ijc/article/view/118
id doaj-5804db37b24a44d99ac3af05b33008d5
record_format Article
spelling doaj-5804db37b24a44d99ac3af05b33008d52020-11-25T04:10:41ZengInaCombS; Universitas Jember; dan Universitas IndonesiaIndonesian Journal of Combinatorics2541-22052020-01-013212613910.19184/ijc.2019.3.2.635Super local edge anti-magic total coloring of paths and its derivationFawwaz Fakhrurrozi Hadiputra0Denny Riama Silaban1Tita Khalis MaryatiUniversitas IndonesiaUniversitas Indonesia<p>Suppose <em>G</em>(<em>V,E</em>) be a connected simple graph and suppose <em>u,v,x</em> be vertices of graph <em>G</em>. A bijection <em>f</em> : <em>V</em> ∪ <em>E</em> → {1,2,3,...,|<em>V</em> (<em>G</em>)| + |<em>E</em>(<em>G</em>)|} is called super local edge antimagic total labeling if for any adjacent edges <em>uv</em> and <em>vx</em>, <em>w</em>(<em>uv</em>) 6= <em>w</em>(<em>vx</em>), which <em>w</em>(<em>uv</em>) = <em>f</em>(<em>u</em>)+<em>f</em>(<em>uv</em>)+<em>f</em>(<em>v</em>) for every vertex <em>u,v,x</em> in <em>G</em>, and <em>f</em>(<em>u</em>) &lt; <em>f</em>(<em>e</em>) for every vertex <em>u</em> and edge <em>e</em> ∈ <em>E</em>(<em>G</em>). Let γ(<em>G</em>) is the chromatic number of edge coloring of a graph <em>G</em>. By giving <em>G</em> a labeling of <em>f</em>, we denotes the minimum weight of edges needed in <em>G</em> as γ<em>leat</em>(<em>G</em>). If every labels for vertices is smaller than its edges, then it is be considered γ<em>sleat</em>(<em>G</em>). In this study, we proved the γ sleat of paths and its derivation.</p>http://www.ijc.or.id/index.php/ijc/article/view/118edge chromatic numberpath graphssuper local edge antimagictotal coloring
collection DOAJ
language English
format Article
sources DOAJ
author Fawwaz Fakhrurrozi Hadiputra
Denny Riama Silaban
Tita Khalis Maryati
spellingShingle Fawwaz Fakhrurrozi Hadiputra
Denny Riama Silaban
Tita Khalis Maryati
Super local edge anti-magic total coloring of paths and its derivation
Indonesian Journal of Combinatorics
edge chromatic number
path graphs
super local edge antimagic
total coloring
author_facet Fawwaz Fakhrurrozi Hadiputra
Denny Riama Silaban
Tita Khalis Maryati
author_sort Fawwaz Fakhrurrozi Hadiputra
title Super local edge anti-magic total coloring of paths and its derivation
title_short Super local edge anti-magic total coloring of paths and its derivation
title_full Super local edge anti-magic total coloring of paths and its derivation
title_fullStr Super local edge anti-magic total coloring of paths and its derivation
title_full_unstemmed Super local edge anti-magic total coloring of paths and its derivation
title_sort super local edge anti-magic total coloring of paths and its derivation
publisher InaCombS; Universitas Jember; dan Universitas Indonesia
series Indonesian Journal of Combinatorics
issn 2541-2205
publishDate 2020-01-01
description <p>Suppose <em>G</em>(<em>V,E</em>) be a connected simple graph and suppose <em>u,v,x</em> be vertices of graph <em>G</em>. A bijection <em>f</em> : <em>V</em> ∪ <em>E</em> → {1,2,3,...,|<em>V</em> (<em>G</em>)| + |<em>E</em>(<em>G</em>)|} is called super local edge antimagic total labeling if for any adjacent edges <em>uv</em> and <em>vx</em>, <em>w</em>(<em>uv</em>) 6= <em>w</em>(<em>vx</em>), which <em>w</em>(<em>uv</em>) = <em>f</em>(<em>u</em>)+<em>f</em>(<em>uv</em>)+<em>f</em>(<em>v</em>) for every vertex <em>u,v,x</em> in <em>G</em>, and <em>f</em>(<em>u</em>) &lt; <em>f</em>(<em>e</em>) for every vertex <em>u</em> and edge <em>e</em> ∈ <em>E</em>(<em>G</em>). Let γ(<em>G</em>) is the chromatic number of edge coloring of a graph <em>G</em>. By giving <em>G</em> a labeling of <em>f</em>, we denotes the minimum weight of edges needed in <em>G</em> as γ<em>leat</em>(<em>G</em>). If every labels for vertices is smaller than its edges, then it is be considered γ<em>sleat</em>(<em>G</em>). In this study, we proved the γ sleat of paths and its derivation.</p>
topic edge chromatic number
path graphs
super local edge antimagic
total coloring
url http://www.ijc.or.id/index.php/ijc/article/view/118
work_keys_str_mv AT fawwazfakhrurrozihadiputra superlocaledgeantimagictotalcoloringofpathsanditsderivation
AT dennyriamasilaban superlocaledgeantimagictotalcoloringofpathsanditsderivation
AT titakhalismaryati superlocaledgeantimagictotalcoloringofpathsanditsderivation
_version_ 1724419738395738112