Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term
This article concerns the existence and uniqueness of almost automorphic solutions to the semilinear parabolic boundary differential equations $$displaylines{ x'(t)=A_mx(t)+f(t,x(t)), quad tin mathbb{R}, cr Lx(t)=phi(t,x(t)), quad tin mathbb{R}, }$$ where $A:=A_m|_{ker L}$ generates a hyp...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2012-11-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2012/212/abstr.html |
id |
doaj-5849a6f9a7c44115ab0d7fafa7e6c4fe |
---|---|
record_format |
Article |
spelling |
doaj-5849a6f9a7c44115ab0d7fafa7e6c4fe2020-11-24T23:48:32ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912012-11-012012212,111Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing termIndira MishraDhirendra BahugunaThis article concerns the existence and uniqueness of almost automorphic solutions to the semilinear parabolic boundary differential equations $$displaylines{ x'(t)=A_mx(t)+f(t,x(t)), quad tin mathbb{R}, cr Lx(t)=phi(t,x(t)), quad tin mathbb{R}, }$$ where $A:=A_m|_{ker L}$ generates a hyperbolic analytic semigroup on a Banach space $X$, with Stepanov-like almost automorphic nonlinear term, defined on some extrapolated space $X_{alpha-1}$, for $0<alpha<1$ and $phi$ takes values in the boundary space $partial X$. http://ejde.math.txstate.edu/Volumes/2012/212/abstr.htmlAlmost automorphicevolution equationhyperbolic semigroupsextrapolation spacesinterpolation spacesneutral differential equationmild solution |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Indira Mishra Dhirendra Bahuguna |
spellingShingle |
Indira Mishra Dhirendra Bahuguna Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term Electronic Journal of Differential Equations Almost automorphic evolution equation hyperbolic semigroups extrapolation spaces interpolation spaces neutral differential equation mild solution |
author_facet |
Indira Mishra Dhirendra Bahuguna |
author_sort |
Indira Mishra |
title |
Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term |
title_short |
Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term |
title_full |
Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term |
title_fullStr |
Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term |
title_full_unstemmed |
Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term |
title_sort |
almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2012-11-01 |
description |
This article concerns the existence and uniqueness of almost automorphic solutions to the semilinear parabolic boundary differential equations $$displaylines{ x'(t)=A_mx(t)+f(t,x(t)), quad tin mathbb{R}, cr Lx(t)=phi(t,x(t)), quad tin mathbb{R}, }$$ where $A:=A_m|_{ker L}$ generates a hyperbolic analytic semigroup on a Banach space $X$, with Stepanov-like almost automorphic nonlinear term, defined on some extrapolated space $X_{alpha-1}$, for $0<alpha<1$ and $phi$ takes values in the boundary space $partial X$. |
topic |
Almost automorphic evolution equation hyperbolic semigroups extrapolation spaces interpolation spaces neutral differential equation mild solution |
url |
http://ejde.math.txstate.edu/Volumes/2012/212/abstr.html |
work_keys_str_mv |
AT indiramishra almostautomorphicmildsolutionsofhyperbolicevolutionequationswithstepanovlikealmostautomorphicforcingterm AT dhirendrabahuguna almostautomorphicmildsolutionsofhyperbolicevolutionequationswithstepanovlikealmostautomorphicforcingterm |
_version_ |
1725485745130438656 |