Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term

This article concerns the existence and uniqueness of almost automorphic solutions to the semilinear parabolic boundary differential equations $$displaylines{ x'(t)=A_mx(t)+f(t,x(t)), quad tin mathbb{R}, cr Lx(t)=phi(t,x(t)), quad tin mathbb{R}, }$$ where $A:=A_m|_{ker L}$ generates a hyp...

Full description

Bibliographic Details
Main Authors: Indira Mishra, Dhirendra Bahuguna
Format: Article
Language:English
Published: Texas State University 2012-11-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2012/212/abstr.html
id doaj-5849a6f9a7c44115ab0d7fafa7e6c4fe
record_format Article
spelling doaj-5849a6f9a7c44115ab0d7fafa7e6c4fe2020-11-24T23:48:32ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912012-11-012012212,111Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing termIndira MishraDhirendra BahugunaThis article concerns the existence and uniqueness of almost automorphic solutions to the semilinear parabolic boundary differential equations $$displaylines{ x'(t)=A_mx(t)+f(t,x(t)), quad tin mathbb{R}, cr Lx(t)=phi(t,x(t)), quad tin mathbb{R}, }$$ where $A:=A_m|_{ker L}$ generates a hyperbolic analytic semigroup on a Banach space $X$, with Stepanov-like almost automorphic nonlinear term, defined on some extrapolated space $X_{alpha-1}$, for $0<alpha<1$ and $phi$ takes values in the boundary space $partial X$. http://ejde.math.txstate.edu/Volumes/2012/212/abstr.htmlAlmost automorphicevolution equationhyperbolic semigroupsextrapolation spacesinterpolation spacesneutral differential equationmild solution
collection DOAJ
language English
format Article
sources DOAJ
author Indira Mishra
Dhirendra Bahuguna
spellingShingle Indira Mishra
Dhirendra Bahuguna
Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term
Electronic Journal of Differential Equations
Almost automorphic
evolution equation
hyperbolic semigroups
extrapolation spaces
interpolation spaces
neutral differential equation
mild solution
author_facet Indira Mishra
Dhirendra Bahuguna
author_sort Indira Mishra
title Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term
title_short Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term
title_full Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term
title_fullStr Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term
title_full_unstemmed Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term
title_sort almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2012-11-01
description This article concerns the existence and uniqueness of almost automorphic solutions to the semilinear parabolic boundary differential equations $$displaylines{ x'(t)=A_mx(t)+f(t,x(t)), quad tin mathbb{R}, cr Lx(t)=phi(t,x(t)), quad tin mathbb{R}, }$$ where $A:=A_m|_{ker L}$ generates a hyperbolic analytic semigroup on a Banach space $X$, with Stepanov-like almost automorphic nonlinear term, defined on some extrapolated space $X_{alpha-1}$, for $0<alpha<1$ and $phi$ takes values in the boundary space $partial X$.
topic Almost automorphic
evolution equation
hyperbolic semigroups
extrapolation spaces
interpolation spaces
neutral differential equation
mild solution
url http://ejde.math.txstate.edu/Volumes/2012/212/abstr.html
work_keys_str_mv AT indiramishra almostautomorphicmildsolutionsofhyperbolicevolutionequationswithstepanovlikealmostautomorphicforcingterm
AT dhirendrabahuguna almostautomorphicmildsolutionsofhyperbolicevolutionequationswithstepanovlikealmostautomorphicforcingterm
_version_ 1725485745130438656