A Parametric Study and Optimization of an Air Conditioning System for a Heat-Loaded Room

Optimization of an air conditioning system is critical in terms of the transient and steady state behavior of the air distribution along the room and the temperature of the equipment themselves. In this paper, three computational techniques, namely, the standard k-ε, RNG k-ε, and the k-ω model, are...

Full description

Bibliographic Details
Main Authors: Qinghe Yao, Hang Bai, Trevor Hocksun Kwan, Kiwamu Kase
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2018/2385691
Description
Summary:Optimization of an air conditioning system is critical in terms of the transient and steady state behavior of the air distribution along the room and the temperature of the equipment themselves. In this paper, three computational techniques, namely, the standard k-ε, RNG k-ε, and the k-ω model, are used to numerically simulate and determine the air distribution in an air-conditioned room. The simulation results for all three methods are verified via a comparison with an experiment involving a room that contains a computer server which generates up to 6 kW of heat. In doing so and by additionally performing an error analysis, it is determined that the k-ω model produces the most accurate results. The results also indicated that the direction of air supply from the air conditioners has a strong impact on the velocity field and temperature distribution along the room and on the computer server. Hence, many candidate directions of air supply options were selected for study and by conducting a performance evaluation in terms of air temperature around the server, the optimal solution was obtained.
ISSN:1024-123X
1563-5147