Unbalanced Multiple Left Turn Lane Usage Modelling: From Individual Choice to Aggregate Volume

Diverse lane preferences of left-turn drivers lead to unbalanced traffic distribution on multiple left-turn lanes. The preferences can be measured in terms of lane usage at macroscopic level and individual lane choice at microscopic level. The data of lane volume and individual lane choices are coll...

Full description

Bibliographic Details
Main Authors: Li Li, Qing-Chang Lu, Dong Zhang, Ping Wang, Gui-Ping Wang
Format: Article
Language:English
Published: Hindawi-Wiley 2019-01-01
Series:Journal of Advanced Transportation
Online Access:http://dx.doi.org/10.1155/2019/5107327
Description
Summary:Diverse lane preferences of left-turn drivers lead to unbalanced traffic distribution on multiple left-turn lanes. The preferences can be measured in terms of lane usage at macroscopic level and individual lane choice at microscopic level. The data of lane volume and individual lane choices are collected at eight dual or triple left-turn lanes equipped in signalized intersections in China. Linear regression model with dummy variables and discrete choice model were applied to analyse drivers’ lane choosing patterns at macroscopic and microscopic levels, respectively, and results of the two studies are mutually verified and complemented. The drivers’ lane preferences are found to vary with approach configurations, traffic control, and the number of lanes available. Static influential factors, such as turning radius inside the intersection, the design of shadowed lane, and intersection skewedness, as well as dynamic influential factors, including queue length, heavy vehicle in queue back and subject vehicle type, could affect the drivers’ lane preferences. The findings of this study have important implications for intersection design and traffic control in practice.
ISSN:0197-6729
2042-3195