Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to impro...

Full description

Bibliographic Details
Main Authors: X. Han, C. Xu, J. A. J. Dungait, R. Bol, X. Wang, W. Wu, F. Meng
Format: Article
Language:English
Published: Copernicus Publications 2018-04-01
Series:Biogeosciences
Online Access:https://www.biogeosciences.net/15/1933/2018/bg-15-1933-2018.pdf
id doaj-589fa3678a5d4c99a23fcdd491a9429d
record_format Article
spelling doaj-589fa3678a5d4c99a23fcdd491a9429d2020-11-24T22:28:09ZengCopernicus PublicationsBiogeosciences1726-41701726-41892018-04-01151933194610.5194/bg-15-1933-2018Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysisX. Han0X. Han1C. Xu2C. Xu3J. A. J. Dungait4R. Bol5X. Wang6W. Wu7F. Meng8Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, ChinaThese authors contributed equally to this work.Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, ChinaThese authors contributed equally to this work.Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UKInstitute of Bio- and Geosciences, Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52425 Jülich, GermanyBeijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, ChinaBeijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, ChinaBeijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, ChinaLoss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR), SI significantly sequestered SOC (0–20 cm depth) at the rate of 0.35 (95 % CI, 0.31–0.40) Mg C ha<sup>−1</sup> yr<sup>−1</sup>, increased crop grain yield by 13.4 % (9.3–18.4 %) and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha<sup>−1</sup> yr<sup>−1</sup> with mineral fertilizer of 200–400 kg N ha<sup>−1</sup> yr<sup>−1</sup> was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9–56.4 %) and SOC sequestrated by the rate of 0.85 (0.54–1.15) Mg C ha<sup>−1</sup> yr<sup>−1</sup>. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28–62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11–15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with increased crop production, and this is of great practical importance to straw management as agriculture intensifies both in China and other regions with different climate conditions.https://www.biogeosciences.net/15/1933/2018/bg-15-1933-2018.pdf
collection DOAJ
language English
format Article
sources DOAJ
author X. Han
X. Han
C. Xu
C. Xu
J. A. J. Dungait
R. Bol
X. Wang
W. Wu
F. Meng
spellingShingle X. Han
X. Han
C. Xu
C. Xu
J. A. J. Dungait
R. Bol
X. Wang
W. Wu
F. Meng
Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis
Biogeosciences
author_facet X. Han
X. Han
C. Xu
C. Xu
J. A. J. Dungait
R. Bol
X. Wang
W. Wu
F. Meng
author_sort X. Han
title Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis
title_short Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis
title_full Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis
title_fullStr Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis
title_full_unstemmed Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis
title_sort straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in china: a system analysis
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2018-04-01
description Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR), SI significantly sequestered SOC (0–20 cm depth) at the rate of 0.35 (95 % CI, 0.31–0.40) Mg C ha<sup>−1</sup> yr<sup>−1</sup>, increased crop grain yield by 13.4 % (9.3–18.4 %) and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha<sup>−1</sup> yr<sup>−1</sup> with mineral fertilizer of 200–400 kg N ha<sup>−1</sup> yr<sup>−1</sup> was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9–56.4 %) and SOC sequestrated by the rate of 0.85 (0.54–1.15) Mg C ha<sup>−1</sup> yr<sup>−1</sup>. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28–62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11–15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with increased crop production, and this is of great practical importance to straw management as agriculture intensifies both in China and other regions with different climate conditions.
url https://www.biogeosciences.net/15/1933/2018/bg-15-1933-2018.pdf
work_keys_str_mv AT xhan strawincorporationincreasescropyieldandsoilorganiccarbonsequestrationbutvariesunderdifferentnaturalconditionsandfarmingpracticesinchinaasystemanalysis
AT xhan strawincorporationincreasescropyieldandsoilorganiccarbonsequestrationbutvariesunderdifferentnaturalconditionsandfarmingpracticesinchinaasystemanalysis
AT cxu strawincorporationincreasescropyieldandsoilorganiccarbonsequestrationbutvariesunderdifferentnaturalconditionsandfarmingpracticesinchinaasystemanalysis
AT cxu strawincorporationincreasescropyieldandsoilorganiccarbonsequestrationbutvariesunderdifferentnaturalconditionsandfarmingpracticesinchinaasystemanalysis
AT jajdungait strawincorporationincreasescropyieldandsoilorganiccarbonsequestrationbutvariesunderdifferentnaturalconditionsandfarmingpracticesinchinaasystemanalysis
AT rbol strawincorporationincreasescropyieldandsoilorganiccarbonsequestrationbutvariesunderdifferentnaturalconditionsandfarmingpracticesinchinaasystemanalysis
AT xwang strawincorporationincreasescropyieldandsoilorganiccarbonsequestrationbutvariesunderdifferentnaturalconditionsandfarmingpracticesinchinaasystemanalysis
AT wwu strawincorporationincreasescropyieldandsoilorganiccarbonsequestrationbutvariesunderdifferentnaturalconditionsandfarmingpracticesinchinaasystemanalysis
AT fmeng strawincorporationincreasescropyieldandsoilorganiccarbonsequestrationbutvariesunderdifferentnaturalconditionsandfarmingpracticesinchinaasystemanalysis
_version_ 1725747596628066304