Inducible and Deterministic Forward Programming of Human Pluripotent Stem Cells into Neurons, Skeletal Myocytes, and Oligodendrocytes

Summary: The isolation or in vitro derivation of many human cell types remains challenging and inefficient. Direct conversion of human pluripotent stem cells (hPSCs) by forced expression of transcription factors provides a potential alternative. However, deficient inducible gene expression in hPSCs...

Full description

Bibliographic Details
Main Authors: Matthias Pawlowski, Daniel Ortmann, Alessandro Bertero, Joana M. Tavares, Roger A. Pedersen, Ludovic Vallier, Mark R.N. Kotter
Format: Article
Language:English
Published: Elsevier 2017-04-01
Series:Stem Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2213671117300838
id doaj-594d5418d1c949c7875666a1d7d874ca
record_format Article
spelling doaj-594d5418d1c949c7875666a1d7d874ca2020-11-25T00:12:09ZengElsevierStem Cell Reports2213-67112017-04-0184803812Inducible and Deterministic Forward Programming of Human Pluripotent Stem Cells into Neurons, Skeletal Myocytes, and OligodendrocytesMatthias Pawlowski0Daniel Ortmann1Alessandro Bertero2Joana M. Tavares3Roger A. Pedersen4Ludovic Vallier5Mark R.N. Kotter6Anne McLaren Laboratory, Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0QQ, UK; Corresponding authorAnne McLaren Laboratory, Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UKAnne McLaren Laboratory, Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UKDepartment of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0QQ, UKAnne McLaren Laboratory, Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UKAnne McLaren Laboratory, Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UKAnne McLaren Laboratory, Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0QQ, UK; Corresponding authorSummary: The isolation or in vitro derivation of many human cell types remains challenging and inefficient. Direct conversion of human pluripotent stem cells (hPSCs) by forced expression of transcription factors provides a potential alternative. However, deficient inducible gene expression in hPSCs has compromised efficiencies of forward programming approaches. We have systematically optimized inducible gene expression in hPSCs using a dual genomic safe harbor gene-targeting strategy. This approach provides a powerful platform for the generation of human cell types by forward programming. We report robust and deterministic reprogramming of hPSCs into neurons and functional skeletal myocytes. Finally, we present a forward programming strategy for rapid and highly efficient generation of human oligodendrocytes. : In this article, Pawlowski and colleagues report a dual genomic safe harbor targeting approach for optimized inducible transgene expression in human pluripotent stem cells (hPSCs). The optimized inducible expression of reprogramming factors in hPSCs enables deterministic forward programming into mature cell types. This is exemplified by the rapid, single-step generation of neurons, skeletal myocytes, and oligodendrocytes. Keywords: human pluripotent stem cells, reprogramming, skeletal myocytes, oligodendrocyte progenitor cells, neuronshttp://www.sciencedirect.com/science/article/pii/S2213671117300838
collection DOAJ
language English
format Article
sources DOAJ
author Matthias Pawlowski
Daniel Ortmann
Alessandro Bertero
Joana M. Tavares
Roger A. Pedersen
Ludovic Vallier
Mark R.N. Kotter
spellingShingle Matthias Pawlowski
Daniel Ortmann
Alessandro Bertero
Joana M. Tavares
Roger A. Pedersen
Ludovic Vallier
Mark R.N. Kotter
Inducible and Deterministic Forward Programming of Human Pluripotent Stem Cells into Neurons, Skeletal Myocytes, and Oligodendrocytes
Stem Cell Reports
author_facet Matthias Pawlowski
Daniel Ortmann
Alessandro Bertero
Joana M. Tavares
Roger A. Pedersen
Ludovic Vallier
Mark R.N. Kotter
author_sort Matthias Pawlowski
title Inducible and Deterministic Forward Programming of Human Pluripotent Stem Cells into Neurons, Skeletal Myocytes, and Oligodendrocytes
title_short Inducible and Deterministic Forward Programming of Human Pluripotent Stem Cells into Neurons, Skeletal Myocytes, and Oligodendrocytes
title_full Inducible and Deterministic Forward Programming of Human Pluripotent Stem Cells into Neurons, Skeletal Myocytes, and Oligodendrocytes
title_fullStr Inducible and Deterministic Forward Programming of Human Pluripotent Stem Cells into Neurons, Skeletal Myocytes, and Oligodendrocytes
title_full_unstemmed Inducible and Deterministic Forward Programming of Human Pluripotent Stem Cells into Neurons, Skeletal Myocytes, and Oligodendrocytes
title_sort inducible and deterministic forward programming of human pluripotent stem cells into neurons, skeletal myocytes, and oligodendrocytes
publisher Elsevier
series Stem Cell Reports
issn 2213-6711
publishDate 2017-04-01
description Summary: The isolation or in vitro derivation of many human cell types remains challenging and inefficient. Direct conversion of human pluripotent stem cells (hPSCs) by forced expression of transcription factors provides a potential alternative. However, deficient inducible gene expression in hPSCs has compromised efficiencies of forward programming approaches. We have systematically optimized inducible gene expression in hPSCs using a dual genomic safe harbor gene-targeting strategy. This approach provides a powerful platform for the generation of human cell types by forward programming. We report robust and deterministic reprogramming of hPSCs into neurons and functional skeletal myocytes. Finally, we present a forward programming strategy for rapid and highly efficient generation of human oligodendrocytes. : In this article, Pawlowski and colleagues report a dual genomic safe harbor targeting approach for optimized inducible transgene expression in human pluripotent stem cells (hPSCs). The optimized inducible expression of reprogramming factors in hPSCs enables deterministic forward programming into mature cell types. This is exemplified by the rapid, single-step generation of neurons, skeletal myocytes, and oligodendrocytes. Keywords: human pluripotent stem cells, reprogramming, skeletal myocytes, oligodendrocyte progenitor cells, neurons
url http://www.sciencedirect.com/science/article/pii/S2213671117300838
work_keys_str_mv AT matthiaspawlowski inducibleanddeterministicforwardprogrammingofhumanpluripotentstemcellsintoneuronsskeletalmyocytesandoligodendrocytes
AT danielortmann inducibleanddeterministicforwardprogrammingofhumanpluripotentstemcellsintoneuronsskeletalmyocytesandoligodendrocytes
AT alessandrobertero inducibleanddeterministicforwardprogrammingofhumanpluripotentstemcellsintoneuronsskeletalmyocytesandoligodendrocytes
AT joanamtavares inducibleanddeterministicforwardprogrammingofhumanpluripotentstemcellsintoneuronsskeletalmyocytesandoligodendrocytes
AT rogerapedersen inducibleanddeterministicforwardprogrammingofhumanpluripotentstemcellsintoneuronsskeletalmyocytesandoligodendrocytes
AT ludovicvallier inducibleanddeterministicforwardprogrammingofhumanpluripotentstemcellsintoneuronsskeletalmyocytesandoligodendrocytes
AT markrnkotter inducibleanddeterministicforwardprogrammingofhumanpluripotentstemcellsintoneuronsskeletalmyocytesandoligodendrocytes
_version_ 1725400936926412800