Design and Analysis of a Photonic Crystal Based Planar Antenna for THz Applications

Modern advancements in wearable smart devices and ultra-high-speed terahertz (THz) communication systems require low cost, low profile, and highly efficient antenna design with high directionality to address the propagation loss at the THz range. For this purpose, a novel shape, high gain antenna fo...

Full description

Bibliographic Details
Main Authors: Inzamam Ahmad, Sadiq Ullah, Shakir Ullah, Usman Habib, Sarosh Ahmad, Adnan Ghaffar, Mohammad Alibakhshikenari, Salahuddin Khan, Ernesto Limiti
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Electronics
Subjects:
PBG
THz
Online Access:https://www.mdpi.com/2079-9292/10/16/1941
Description
Summary:Modern advancements in wearable smart devices and ultra-high-speed terahertz (THz) communication systems require low cost, low profile, and highly efficient antenna design with high directionality to address the propagation loss at the THz range. For this purpose, a novel shape, high gain antenna for THz frequency range applications is presented in this work. The proposed antenna is based on a photonic bandgap (PBG)-based crystal polyimide substrate which gives optimum performance in terms of gain (9.45 dB), directivity (9.99 dBi), and highly satisfactory VSWR (<1) at 0.63 THz. The performance of the antenna is studied on PBGs of different geometrical configurations and the results are compared with the antenna based on the homogeneous polyimide-based substrate. The effects of variations in the dimensions of the PBG unit cells are also studied to achieve a −10 dB bandwidth of 28.97 GHz (0.616 to 0.64 THz).
ISSN:2079-9292