Simultaneous Optimisation of Cable Connection Schemes and Capacity for Offshore Wind Farms via a Modified Bat Algorithm

Offshore wind energy has attracted worldwide attention and investments in the last decade due to the stability and abundance of wind resources. As one of the main components of this, internal array cables have a great impact on the levelised cost of energy of offshore wind farms, and thus their conn...

Full description

Bibliographic Details
Main Authors: Yuanhang Qi, Peng Hou, Liang Yang, Guangya Yang
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/9/2/265
Description
Summary:Offshore wind energy has attracted worldwide attention and investments in the last decade due to the stability and abundance of wind resources. As one of the main components of this, internal array cables have a great impact on the levelised cost of energy of offshore wind farms, and thus their connection layout is a matter of concern. In this paper, a classical mathematical problem—the traveling salesman problem, which belongs to the field of graph theory—is applied to solve the offshore wind farm cable connection layout optimization problem. Both the capital investment on cables, cable laying, and the cost of power losses associated with array cables are considered in the proposed model. A modified bat algorithm is presented to resolve the problem. Furthermore, a cable crossing detection method is also adopted to avoid obtaining crossed cable connection layouts. The effectiveness was verified through a case study.
ISSN:2076-3417