Painlevé Equation PII and Strongly Normal Extensions
The aim of this paper is to show that if F is a differential field and y is a PII transcendent such that tr.deg.F 〈y〉 = 2, then every constant in F〈y〉 is in F. We also show that in this case, F〈y〉 is not contained in any strongly normal extension.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2016-12-01
|
Series: | Demonstratio Mathematica |
Subjects: | |
Online Access: | http://www.degruyter.com/view/j/dema.2016.49.issue-4/dema-2016-0033/dema-2016-0033.xml?format=INT |
id |
doaj-59fd55931c234870ada16e2174e3c621 |
---|---|
record_format |
Article |
spelling |
doaj-59fd55931c234870ada16e2174e3c6212020-11-24T21:36:16ZengDe GruyterDemonstratio Mathematica0420-12132391-46612016-12-0149438639710.1515/dema-2016-0033dema-2016-0033Painlevé Equation PII and Strongly Normal ExtensionsMiri Sofiane El-Hadi0Laboratoire D’Analyse Non Linéaire Et Mathématiques Appliquées Bp 119 Tlemcen 13000 AlgeriaThe aim of this paper is to show that if F is a differential field and y is a PII transcendent such that tr.deg.F 〈y〉 = 2, then every constant in F〈y〉 is in F. We also show that in this case, F〈y〉 is not contained in any strongly normal extension.http://www.degruyter.com/view/j/dema.2016.49.issue-4/dema-2016-0033/dema-2016-0033.xml?format=INTPainlevé equation PIIdifferential algebrastrongly normal extensions |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Miri Sofiane El-Hadi |
spellingShingle |
Miri Sofiane El-Hadi Painlevé Equation PII and Strongly Normal Extensions Demonstratio Mathematica Painlevé equation PII differential algebra strongly normal extensions |
author_facet |
Miri Sofiane El-Hadi |
author_sort |
Miri Sofiane El-Hadi |
title |
Painlevé Equation PII and Strongly Normal Extensions |
title_short |
Painlevé Equation PII and Strongly Normal Extensions |
title_full |
Painlevé Equation PII and Strongly Normal Extensions |
title_fullStr |
Painlevé Equation PII and Strongly Normal Extensions |
title_full_unstemmed |
Painlevé Equation PII and Strongly Normal Extensions |
title_sort |
painlevé equation pii and strongly normal extensions |
publisher |
De Gruyter |
series |
Demonstratio Mathematica |
issn |
0420-1213 2391-4661 |
publishDate |
2016-12-01 |
description |
The aim of this paper is to show that if F is a differential field and y is a PII transcendent such that tr.deg.F 〈y〉 = 2, then every constant in F〈y〉 is in F. We also show that in this case, F〈y〉 is not contained in any strongly normal extension. |
topic |
Painlevé equation PII differential algebra strongly normal extensions |
url |
http://www.degruyter.com/view/j/dema.2016.49.issue-4/dema-2016-0033/dema-2016-0033.xml?format=INT |
work_keys_str_mv |
AT mirisofianeelhadi painleveequationpiiandstronglynormalextensions |
_version_ |
1725942088076361728 |