Heterogeneous OH oxidation of isoprene-epoxydiol-derived organosulfates: kinetics, chemistry and formation of inorganic sulfate
<p>Acid-catalyzed multiphase chemistry of epoxydiols formed from isoprene oxidation yields the most abundant organosulfates (i.e., methyltetrol sulfates) detected in atmospheric fine aerosols in the boundary layer. This potentially determines the physicochemical properties of fine aerosols in...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-02-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/19/2433/2019/acp-19-2433-2019.pdf |
Summary: | <p>Acid-catalyzed multiphase chemistry of epoxydiols formed from isoprene
oxidation yields the most abundant organosulfates (i.e., methyltetrol
sulfates) detected in atmospheric fine aerosols in the boundary layer. This
potentially determines the physicochemical properties of fine aerosols in
isoprene-rich regions. However, chemical stability of these organosulfates
remains unclear. As a result, we investigate the heterogeneous oxidation of
aerosols consisting of potassium 3-methyltetrol sulfate ester
(<span class="inline-formula">C<sub>5</sub>H<sub>11</sub>SO<sub>7</sub>K</span>) by gas-phase hydroxyl (OH) radicals at a relative
humidity (RH) of 70.8 %. Real-time molecular composition of the aerosols
is obtained by using a Direct Analysis in Real Time (DART) ionization source
coupled to a high-resolution mass spectrometer. Aerosol mass spectra reveal
that 3-methyltetrol sulfate ester can be detected as its anionic form
(<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">C</mi><mn mathvariant="normal">5</mn></msub><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">11</mn></msub><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">7</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="55pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="fb4b437cf9d2b769ec586f66c1e3f65d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-2433-2019-ie00001.svg" width="55pt" height="15pt" src="acp-19-2433-2019-ie00001.png"/></svg:svg></span></span>) via direct ionization in the negative
ionization mode. Kinetic measurements reveal that the effective heterogeneous
OH rate constant is measured to be <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">4.74</mn><mo>±</mo><mn mathvariant="normal">0.2</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">13</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="88pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="0022baee6c4d85fd5615a7f70ede3d1c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-2433-2019-ie00002.svg" width="88pt" height="14pt" src="acp-19-2433-2019-ie00002.png"/></svg:svg></span></span> cm<span class="inline-formula"><sup>3</sup></span> molecule<span class="inline-formula"><sup>−1</sup></span> s<span class="inline-formula"><sup>−1</sup></span> with a chemical lifetime against OH
oxidation of <span class="inline-formula">16.2±0.3</span> days, assuming an OH radical concentration of
<span class="inline-formula">1.5×10<sup>6</sup></span> molecules cm<span class="inline-formula"><sup>−3</sup></span>. Comparison of this lifetime with
those against other aerosol removal processes, such as dry and wet
deposition, suggests that 3-methyltetrol sulfate ester is likely to be
chemically stable over atmospheric timescales. Aerosol mass spectra only show
an increase in the intensity of bisulfate ion (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">HSO</mi><mn mathvariant="normal">4</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="33pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="6e1e76b79502b5044660e5d5b035b6d6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-2433-2019-ie00003.svg" width="33pt" height="16pt" src="acp-19-2433-2019-ie00003.png"/></svg:svg></span></span>) after
oxidation, suggesting the importance of fragmentation processes. Overall,
potassium 3-methyltetrol sulfate ester likely decomposes to form volatile
fragmentation products and aqueous-phase sulfate radial anion
(<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mi mathvariant="normal" class="Radical">⚫</mi><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="4e2ae2305388842d7e4cbf13666d4b76"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-2433-2019-ie00004.svg" width="28pt" height="16pt" src="acp-19-2433-2019-ie00004.png"/></svg:svg></span></span>). <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mi class="Radical" mathvariant="normal">⚫</mi><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="543654ec2c60df6c4d1a1bfde98e45a6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-2433-2019-ie00005.svg" width="28pt" height="16pt" src="acp-19-2433-2019-ie00005.png"/></svg:svg></span></span> subsequently undergoes
intermolecular hydrogen abstraction to form <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">HSO</mi><mn mathvariant="normal">4</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="33pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="f88652e579276fb2e0946dceb43aed22"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-2433-2019-ie00006.svg" width="33pt" height="16pt" src="acp-19-2433-2019-ie00006.png"/></svg:svg></span></span>. These processes
appear to explain the compositional evolution of 3-methyltetrol sulfate ester
during heterogeneous OH oxidation.</p> |
---|---|
ISSN: | 1680-7316 1680-7324 |