Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites—A Review

Monolithic epoxy, because of its brittleness, cannot prevent crack propagation and is vulnerable to fracture. However, it is well established that when reinforced—especially by nano-fillers, such as metallic oxides, clays, carbon nanotubes, and other carbonaceous materials—its ability to withstand c...

Full description

Bibliographic Details
Main Authors: Rasheed Atif, Islam Shyha, Fawad Inam
Format: Article
Language:English
Published: MDPI AG 2016-08-01
Series:Polymers
Subjects:
Online Access:http://www.mdpi.com/2073-4360/8/8/281
Description
Summary:Monolithic epoxy, because of its brittleness, cannot prevent crack propagation and is vulnerable to fracture. However, it is well established that when reinforced—especially by nano-fillers, such as metallic oxides, clays, carbon nanotubes, and other carbonaceous materials—its ability to withstand crack propagation is propitiously improved. Among various nano-fillers, graphene has recently been employed as reinforcement in epoxy to enhance the fracture related properties of the produced epoxy–graphene nanocomposites. In this review, mechanical, thermal, and electrical properties of graphene reinforced epoxy nanocomposites will be correlated with the topographical features, morphology, weight fraction, dispersion state, and surface functionalization of graphene. The factors in which contrasting results were reported in the literature are highlighted, such as the influence of graphene on the mechanical properties of epoxy nanocomposites. Furthermore, the challenges to achieving the desired performance of polymer nanocomposites are also suggested throughout the article.
ISSN:2073-4360