Prediction Model of Corrosion Current Density Induced by Stray Current Based on QPSO-Driven Neural Network

The buried pipelines and metallic structures in subway systems are subjected to electrochemical corrosion under the stray current interference. The corrosion current density determines the degree and the speed of stray current corrosion. A method combining electrochemical experiment with the machine...

Full description

Bibliographic Details
Main Authors: Chengtao Wang, Wei Li, Gaifang Xin, Yuqiao Wang, Shaoyi Xu
Format: Article
Language:English
Published: Hindawi-Wiley 2019-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2019/3429816
Description
Summary:The buried pipelines and metallic structures in subway systems are subjected to electrochemical corrosion under the stray current interference. The corrosion current density determines the degree and the speed of stray current corrosion. A method combining electrochemical experiment with the machine learning algorithm was utilized in this research to study the corrosion current density under the coupling action of stray current and chloride ion. In this study, a quantum particle swarm optimization-neural network (QPSO-NN) model was built up to predict the corrosion current density in the process of stray current corrosion. The QPSO algorithm was employed to optimize the updating process of weights and biases in the artificial neural network (ANN). The results show that the accuracy of the proposed QPSO-NN model is better than the model based on backpropagation neural network (BPNN) and particle swarm optimization-neural network (PSO-NN). The accuracy distribution of the QPSO-NN model is more stable than that of the BPNN model and the PSO-NN model. The presented model can be used for the prediction of corrosion current density and provides the possibility to monitor the stray current corrosion in subway system through an intelligent learning algorithm.
ISSN:1076-2787
1099-0526