1D-Var retrieval of daytime total columnar water vapour from MERIS measurements
A new scheme for the retrieval of total columnar water vapour from measurements of MERIS (Medium Resolution Imaging Spectrometer) on ENVISAT (ENVIronmental SATellite) is presented. The algorithm is based on a fast forward model of the water vapour transmittance around 900nm, including a correction f...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2012-03-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | http://www.atmos-meas-tech.net/5/631/2012/amt-5-631-2012.pdf |
id |
doaj-5b227fc5d5b94a5a8fce10c505aca7fc |
---|---|
record_format |
Article |
spelling |
doaj-5b227fc5d5b94a5a8fce10c505aca7fc2020-11-24T21:07:27ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482012-03-015363164610.5194/amt-5-631-20121D-Var retrieval of daytime total columnar water vapour from MERIS measurementsR. LindstrotR. PreuskerH. DiedrichL. DopplerR. BennartzJ. FischerA new scheme for the retrieval of total columnar water vapour from measurements of MERIS (Medium Resolution Imaging Spectrometer) on ENVISAT (ENVIronmental SATellite) is presented. The algorithm is based on a fast forward model of the water vapour transmittance around 900nm, including a correction for atmospheric scattering and the influence of the temperature- and pressure-profile on the water vapour absorption lines. It provides the water vapour column amount for cloud-free scenes above land and ocean at a spatial resolution of 0.25 km × 0.3 km and 1 km × 1.2 km, depending on whether applied to the "full resolution" or the operational "reduced resolution" mode of MERIS. Uncertainties are provided on a pixel-by-pixel basis, taking into account all relevant sources of error. An extensive validation against various sources of ground-based reference data reveals a high accuracy of MERIS water vapour above land (root mean square deviations between 1.4 mm and 3.7 mm), apart from a wet bias of MERIS between 5 and 10% that is found in all comparison studies. This wet bias might be caused by spectroscopic uncertainties, such as the description of the water vapour continuum. Above ocean the accuracy is reduced, due to the uncertainty introduced by the unknown atmospheric scattering. Consequently, an increased root mean square deviation of ≥5 mm was found by comparing MERIS total columnar water vapour above ocean against SSM/I and ENVISAT MWR data. An increased wet bias of 2–3 mm is found over ocean, potentially due to a not properly working atmospheric correction scheme.http://www.atmos-meas-tech.net/5/631/2012/amt-5-631-2012.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
R. Lindstrot R. Preusker H. Diedrich L. Doppler R. Bennartz J. Fischer |
spellingShingle |
R. Lindstrot R. Preusker H. Diedrich L. Doppler R. Bennartz J. Fischer 1D-Var retrieval of daytime total columnar water vapour from MERIS measurements Atmospheric Measurement Techniques |
author_facet |
R. Lindstrot R. Preusker H. Diedrich L. Doppler R. Bennartz J. Fischer |
author_sort |
R. Lindstrot |
title |
1D-Var retrieval of daytime total columnar water vapour from MERIS measurements |
title_short |
1D-Var retrieval of daytime total columnar water vapour from MERIS measurements |
title_full |
1D-Var retrieval of daytime total columnar water vapour from MERIS measurements |
title_fullStr |
1D-Var retrieval of daytime total columnar water vapour from MERIS measurements |
title_full_unstemmed |
1D-Var retrieval of daytime total columnar water vapour from MERIS measurements |
title_sort |
1d-var retrieval of daytime total columnar water vapour from meris measurements |
publisher |
Copernicus Publications |
series |
Atmospheric Measurement Techniques |
issn |
1867-1381 1867-8548 |
publishDate |
2012-03-01 |
description |
A new scheme for the retrieval of total columnar water vapour from measurements of MERIS (Medium Resolution Imaging Spectrometer) on ENVISAT (ENVIronmental SATellite) is presented. The algorithm is based on a fast forward model of the water vapour transmittance around 900nm, including a correction for atmospheric scattering and the influence of the temperature- and pressure-profile on the water vapour absorption lines. It provides the water vapour column amount for cloud-free scenes above land and ocean at a spatial resolution of 0.25 km × 0.3 km and 1 km × 1.2 km, depending on whether applied to the "full resolution" or the operational "reduced resolution" mode of MERIS. Uncertainties are provided on a pixel-by-pixel basis, taking into account all relevant sources of error. An extensive validation against various sources of ground-based reference data reveals a high accuracy of MERIS water vapour above land (root mean square deviations between 1.4 mm and 3.7 mm), apart from a wet bias of MERIS between 5 and 10% that is found in all comparison studies. This wet bias might be caused by spectroscopic uncertainties, such as the description of the water vapour continuum. Above ocean the accuracy is reduced, due to the uncertainty introduced by the unknown atmospheric scattering. Consequently, an increased root mean square deviation of ≥5 mm was found by comparing MERIS total columnar water vapour above ocean against SSM/I and ENVISAT MWR data. An increased wet bias of 2–3 mm is found over ocean, potentially due to a not properly working atmospheric correction scheme. |
url |
http://www.atmos-meas-tech.net/5/631/2012/amt-5-631-2012.pdf |
work_keys_str_mv |
AT rlindstrot 1dvarretrievalofdaytimetotalcolumnarwatervapourfrommerismeasurements AT rpreusker 1dvarretrievalofdaytimetotalcolumnarwatervapourfrommerismeasurements AT hdiedrich 1dvarretrievalofdaytimetotalcolumnarwatervapourfrommerismeasurements AT ldoppler 1dvarretrievalofdaytimetotalcolumnarwatervapourfrommerismeasurements AT rbennartz 1dvarretrievalofdaytimetotalcolumnarwatervapourfrommerismeasurements AT jfischer 1dvarretrievalofdaytimetotalcolumnarwatervapourfrommerismeasurements |
_version_ |
1716762797113606144 |