Environmentally-Friendly Green Approach for the Production of Zinc Oxide Nanoparticles and Their Anti-Fungal, Ovicidal, and Larvicidal Properties

Green synthesis of nanoparticles can be an important alternative compared to conventional physio-chemical synthesis. We utilized Scadoxus multiflorus leaf powder aqueous extract as a capping and stabilizing agent for the synthesis of pure zinc oxide nanoparticles (ZnO NPs). Further, the synthesized...

Full description

Bibliographic Details
Main Authors: Naif Abdullah Al-Dhabi, Mariadhas Valan Arasu
Format: Article
Language:English
Published: MDPI AG 2018-07-01
Series:Nanomaterials
Subjects:
Online Access:http://www.mdpi.com/2079-4991/8/7/500
Description
Summary:Green synthesis of nanoparticles can be an important alternative compared to conventional physio-chemical synthesis. We utilized Scadoxus multiflorus leaf powder aqueous extract as a capping and stabilizing agent for the synthesis of pure zinc oxide nanoparticles (ZnO NPs). Further, the synthesized ZnO NPs were subjected to various characterization techniques. Transmission electron microscope (TEM) analysis showed an irregular spherical shape, with an average particle size of 31 ± 2 nm. Furthermore, the synthesized ZnO NPs were tested against Aedes aegypti larvae and eggs, giving significant LC50 value of 34.04 ppm. Ovicidal activity resulted in a higher percentage mortality rate of 96.4 ± 0.24 at 120 ppm with LC50 value of 32.73 ppm. Anti-fungal studies were also conducted for ZnO NPs against Aspergillus niger and Aspergillus flavus, which demonstrated a higher inhibition rate for Aspergillus flavus compared to Aspergillus niger.
ISSN:2079-4991