Morphological, Structural, and Dielectric Properties of Thermally Aged AC 500 kV XLPE Submarine Cable Insulation Material and Its Deterioration Condition Assessment

Cross-linked polyethylene (XLPE) has been widely used as insulation material for cables. In 2019, the highest voltage level AC 500 kV XLPE submarine cable has been operated in Zhoushan, China. The irreversible degradation poses a safety hazard to the operation of submarine cable. Therefore, it is ne...

Full description

Bibliographic Details
Main Authors: Zhiqian Liu, Jian Hao, Ruijin Liao, Jian Li, Zhen Gao, Zhengbo Liang
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8896835/
id doaj-5b67c579638045c68612559d57e60b0e
record_format Article
spelling doaj-5b67c579638045c68612559d57e60b0e2021-03-29T23:01:18ZengIEEEIEEE Access2169-35362019-01-01716506516507510.1109/ACCESS.2019.29531278896835Morphological, Structural, and Dielectric Properties of Thermally Aged AC 500 kV XLPE Submarine Cable Insulation Material and Its Deterioration Condition AssessmentZhiqian Liu0Jian Hao1https://orcid.org/0000-0001-9705-3771Ruijin Liao2Jian Li3Zhen Gao4Zhengbo Liang5State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, ChinaState Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, ChinaState Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, ChinaState Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, ChinaZhoushan Power Supply Company, State Grid Zhejiang Electric Power Supply Company, Zhoushan, ChinaState Grid Electric Power Research Institute, Wuhan, ChinaCross-linked polyethylene (XLPE) has been widely used as insulation material for cables. In 2019, the highest voltage level AC 500 kV XLPE submarine cable has been operated in Zhoushan, China. The irreversible degradation poses a safety hazard to the operation of submarine cable. Therefore, it is necessary to investigate the physical, chemical and electrical properties of XLPE submarine cable insulation under aging condition and explore the method for its deterioration degree assessment. In this paper, the AC 500 kV XLPE submarine cable insulation material was thermally aged at 130 &#x00B0;C. The deterioration characteristics of materials were analyzed based on morphology, chemical structure, mechanical property, thermal property and dielectric properties. Multiple characteristic parameters were extracted and new deterioration condition assessment model was established. Results show that the physicochemical characteristic parameters including retention rate of elongation at break, carbonyl index (CI) based on FTIR, full-width at half-maximum (FWHM) of the diffraction peak based on XRD, melting enthalpy based on DSC analysis, and the dielectric characteristic parameters including modified Cole-Cole model parameter &#x03C7;<sub>s&#x03B1;</sub> and AC breakdown strength are sensitive to deterioration condition of XLPE material. According to the change of elongation retention at break, the deterioration condition of XLPE sample was divided into enhanced stage, wear-out stage and disposal stage. The new multi-factor deterioration condition assessment model including six characteristic parameters (retention rate of elongation at break, CI, FWHM, melting enthalpy, modified Cole-Cole model parameter &#x03C7;<sub>s&#x03B1;</sub>, AC breakdown strength) was successfully established by grey correlation analysis. The new model can reflect the property of mechanical, chemical, thermal and dielectric property and has prominent effect in differentiating deterioration degree of the AC 500 kV XLPE submarine cable insulation material.https://ieeexplore.ieee.org/document/8896835/Cross-linked polyethylene (XLPE)thermal agingphysicochemical propertiesdielectric propertiescondition assessment
collection DOAJ
language English
format Article
sources DOAJ
author Zhiqian Liu
Jian Hao
Ruijin Liao
Jian Li
Zhen Gao
Zhengbo Liang
spellingShingle Zhiqian Liu
Jian Hao
Ruijin Liao
Jian Li
Zhen Gao
Zhengbo Liang
Morphological, Structural, and Dielectric Properties of Thermally Aged AC 500 kV XLPE Submarine Cable Insulation Material and Its Deterioration Condition Assessment
IEEE Access
Cross-linked polyethylene (XLPE)
thermal aging
physicochemical properties
dielectric properties
condition assessment
author_facet Zhiqian Liu
Jian Hao
Ruijin Liao
Jian Li
Zhen Gao
Zhengbo Liang
author_sort Zhiqian Liu
title Morphological, Structural, and Dielectric Properties of Thermally Aged AC 500 kV XLPE Submarine Cable Insulation Material and Its Deterioration Condition Assessment
title_short Morphological, Structural, and Dielectric Properties of Thermally Aged AC 500 kV XLPE Submarine Cable Insulation Material and Its Deterioration Condition Assessment
title_full Morphological, Structural, and Dielectric Properties of Thermally Aged AC 500 kV XLPE Submarine Cable Insulation Material and Its Deterioration Condition Assessment
title_fullStr Morphological, Structural, and Dielectric Properties of Thermally Aged AC 500 kV XLPE Submarine Cable Insulation Material and Its Deterioration Condition Assessment
title_full_unstemmed Morphological, Structural, and Dielectric Properties of Thermally Aged AC 500 kV XLPE Submarine Cable Insulation Material and Its Deterioration Condition Assessment
title_sort morphological, structural, and dielectric properties of thermally aged ac 500 kv xlpe submarine cable insulation material and its deterioration condition assessment
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2019-01-01
description Cross-linked polyethylene (XLPE) has been widely used as insulation material for cables. In 2019, the highest voltage level AC 500 kV XLPE submarine cable has been operated in Zhoushan, China. The irreversible degradation poses a safety hazard to the operation of submarine cable. Therefore, it is necessary to investigate the physical, chemical and electrical properties of XLPE submarine cable insulation under aging condition and explore the method for its deterioration degree assessment. In this paper, the AC 500 kV XLPE submarine cable insulation material was thermally aged at 130 &#x00B0;C. The deterioration characteristics of materials were analyzed based on morphology, chemical structure, mechanical property, thermal property and dielectric properties. Multiple characteristic parameters were extracted and new deterioration condition assessment model was established. Results show that the physicochemical characteristic parameters including retention rate of elongation at break, carbonyl index (CI) based on FTIR, full-width at half-maximum (FWHM) of the diffraction peak based on XRD, melting enthalpy based on DSC analysis, and the dielectric characteristic parameters including modified Cole-Cole model parameter &#x03C7;<sub>s&#x03B1;</sub> and AC breakdown strength are sensitive to deterioration condition of XLPE material. According to the change of elongation retention at break, the deterioration condition of XLPE sample was divided into enhanced stage, wear-out stage and disposal stage. The new multi-factor deterioration condition assessment model including six characteristic parameters (retention rate of elongation at break, CI, FWHM, melting enthalpy, modified Cole-Cole model parameter &#x03C7;<sub>s&#x03B1;</sub>, AC breakdown strength) was successfully established by grey correlation analysis. The new model can reflect the property of mechanical, chemical, thermal and dielectric property and has prominent effect in differentiating deterioration degree of the AC 500 kV XLPE submarine cable insulation material.
topic Cross-linked polyethylene (XLPE)
thermal aging
physicochemical properties
dielectric properties
condition assessment
url https://ieeexplore.ieee.org/document/8896835/
work_keys_str_mv AT zhiqianliu morphologicalstructuralanddielectricpropertiesofthermallyagedac500kvxlpesubmarinecableinsulationmaterialanditsdeteriorationconditionassessment
AT jianhao morphologicalstructuralanddielectricpropertiesofthermallyagedac500kvxlpesubmarinecableinsulationmaterialanditsdeteriorationconditionassessment
AT ruijinliao morphologicalstructuralanddielectricpropertiesofthermallyagedac500kvxlpesubmarinecableinsulationmaterialanditsdeteriorationconditionassessment
AT jianli morphologicalstructuralanddielectricpropertiesofthermallyagedac500kvxlpesubmarinecableinsulationmaterialanditsdeteriorationconditionassessment
AT zhengao morphologicalstructuralanddielectricpropertiesofthermallyagedac500kvxlpesubmarinecableinsulationmaterialanditsdeteriorationconditionassessment
AT zhengboliang morphologicalstructuralanddielectricpropertiesofthermallyagedac500kvxlpesubmarinecableinsulationmaterialanditsdeteriorationconditionassessment
_version_ 1724190323111886848