Performance Analysis of Asphalt Mixtures Modified with Ground Tire Rubber Modifiers and Recycled Materials

The usage of Ground Tire Rubber (GTR) in asphalt pavements has gained renewed interest due to its potential sustainability, economic, and performance benefits. This study focuses on asphalt mixtures designed with three different rubber modifier products including (1) a terminal-blend GTR, (2) a dry-...

Full description

Bibliographic Details
Main Authors: Punyaslok Rath, Joshua E. Love, William G. Buttlar, Henrique Reis
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/11/6/1792
Description
Summary:The usage of Ground Tire Rubber (GTR) in asphalt pavements has gained renewed interest due to its potential sustainability, economic, and performance benefits. This study focuses on asphalt mixtures designed with three different rubber modifier products including (1) a terminal-blend GTR, (2) a dry-process, chemically processed rubber product, and (3) a terminal-blend rubber-polymer hybrid product. The modifications were incorporated into Illinois Tollway&#8217;s approved Stone Matrix Asphalt (SMA) designs using (1) a base binder (PG 58-28), (2) a softer binder (PG 46-34), and (3) a softer binder with higher recycled content. Disk-shaped Compact Tension (DC(T)) test, Hamburg Wheel Tracking Test (HWTT) and Acoustic Emission (AE) tests were performed to characterize the mixtures. The fracture energy for most mixtures met the stringent criteria of 690 J/m<sup>2</sup> and the rut depths measured were less than 6 mm at 20,000 wheel passes. A Hamburg-DC(T) plot suggests that higher amounts of RAP/RAS (RAP: Reclaimed Asphalt Pavement; RAS: Reusable Asphalt Shingles) can be successfully used if a suitably soft base binder is employed.
ISSN:2071-1050