Mie LIDAR Observations of Tropospheric Aerosol over Wuhan

Wuhan is a rapidly developing large city in central China. To analyze the aerosol characteristics over Wuhan, the optical properties of the nocturnal aerosol layers in the lower troposphere were observed using a ground-based LIDAR(Light Detection And Ranging) located in the Laboratory of Information...

Full description

Bibliographic Details
Main Authors: Wei Gong, Boming Liu, Yingying Ma, Miao Zhang
Format: Article
Language:English
Published: MDPI AG 2015-08-01
Series:Atmosphere
Subjects:
Online Access:http://www.mdpi.com/2073-4433/6/8/1129
Description
Summary:Wuhan is a rapidly developing large city in central China. To analyze the aerosol characteristics over Wuhan, the optical properties of the nocturnal aerosol layers in the lower troposphere were observed using a ground-based LIDAR(Light Detection And Ranging) located in the Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS) from Wuhan University, China (114°21′E, 30°32′N) in January 2013–January 2015. The vertical distribution and temporal variation of tropospheric aerosols over Wuhan were summarized. The atmospheric boundary layer height (ABLH) was mainly at an altitude of 1.5–2 km (~33.1% probability), with an annual average of 1.66 km. The ABLH was higher in spring–summer (~2 km) and lower in autumn–winter (~1.2 km). The aerosol optical depth (AOD) was higher in spring–autumn than in summer–winter. The highest AOD was about 0.79 in October and the lowest was about 0.08 in January. The annual average was about 0.3. To study the relationship between the AOD and the particulate matter ≤2.5 µm in the aerodynamic diameter (PM2.5) in the lower troposphere, a typical haze event from 9–14 October 2014 was investigated. The results showed a correlation coefficient of 0.5165 between these two variables.
ISSN:2073-4433