Preparation of UV-Curable Low Surface Energy Polyurethane Acrylate/Fluorinated Siloxane Resin Hybrid Coating with Enhanced Surface and Abrasion Resistance Properties

Low surface energy coatings have gained considerable attention due to their superior surface hydrophobic properties. However, their abrasion resistance and sustainability of surface hydrophobicity are still not very satisfactory and need to be improved. In this work, a series of utraviolet (UV)-cura...

Full description

Bibliographic Details
Main Authors: Jianping Zhou, Chunfang Zhu, Hongbo Liang, Zhengyue Wang, Hailong Wang
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/6/1388
Description
Summary:Low surface energy coatings have gained considerable attention due to their superior surface hydrophobic properties. However, their abrasion resistance and sustainability of surface hydrophobicity are still not very satisfactory and need to be improved. In this work, a series of utraviolet (UV)-curable fluorosiloxane copolymers were synthesized and used as reactive additives to prepare polyurethane acrylate coatings with low surface energy. The effect of the addition of the fluorinated graft copolymers on the mechanical durability and surface hydrophobicity of the UV-cured hybrid films during the friction-annealing treatment cycles was investigated. The results show that introducing fluorosiloxane additives can greatly enhance surface hydrophobicity of the hybrid film. With addition of 2 wt.% fluorosiloxane copolymers, the water contact angle (WCA) value of the hybrid film was almost tripled compared to that of the pristine PU film, increasing from 58° to 144°. The hybrid film also showed enhanced abrasion resistance and could withstand up to about 60 times of friction under a pressure of 20 kPa. The microstructure formed in the annealed film was found to contribute much to achieve better surface hydrophobicity. The polyurethane acrylate/fluorinated siloxane resin hybrid film prepared in this study exhibits excellent potential for applications in the low surface energy field.
ISSN:1996-1944