Scope Out Multiband Gravitational-Wave Observations of GW190521-Like Binary Black Holes with Space Gravitational Wave Antenna B-DECIGO

The gravitational wave event, GW190521, is the most massive binary black hole merger observed by ground-based gravitational wave observatories LIGO/Virgo to date. While the observed gravitational wave signal is mainly in the merger and ringdown phases, the inspiral gravitational wave signal of the G...

Full description

Bibliographic Details
Main Authors: Hiroyuki Nakano, Ryuichi Fujita, Soichiro Isoyama, Norichika Sago
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/7/3/53
Description
Summary:The gravitational wave event, GW190521, is the most massive binary black hole merger observed by ground-based gravitational wave observatories LIGO/Virgo to date. While the observed gravitational wave signal is mainly in the merger and ringdown phases, the inspiral gravitational wave signal of the GW190521-like binary will be more visible to space-based detectors in the low-frequency band. In addition, the ringdown gravitational wave signal will be louder in the next generation (3G) of ground-based detectors in the high-frequency band, displaying the great potential of multiband gravitational wave observations. In this paper, we explore the scientific potential of multiband observations of GW190521-like binaries with a milli-Hz gravitational wave observatory: LISA; a deci-Hz observatory: B-DECIGO; and (next generation of) hecto-Hz observatories: aLIGO and ET. In the case of quasicircular evolution, the triple-band observations of LISA, B-DECIGO, and ET will provide parameter estimation errors of the masses and spin amplitudes of component black holes at the level of order of 1–10%. This would allow consistency tests of general relativity in the strong field at an unparalleled precision, particularly with the “B-DECIGO + ET” observation. In the case of eccentric evolution, the multiband signal-to-noise ratio found in “B-DECIGO + ET” observation would be larger than 100 for a five-year observation prior to coalescence, even with high final eccentricities.
ISSN:2218-1997